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AFIT-ENG-T-14-J-7
Abstract

Geolocation is a common application for satellite systems. This involves estimating

an object’s location (herein called the subject) based on noisy satellite data. Many

geolocation methods exist; however, none are tailored specifically for the unique problems

faced by satellite systems. Some satellites are so far from the subject being localized

that by the time the satellite receives a signal from the subject it might have moved

appreciably. Furthermore, some satellites or terrestial sensors may be much closer to

the subject than others. Therefore, sensors may need to be weighted based upon their

distance to the subject being localized. In addition, even if a subject can be localized,

the confidence in this localization may be unknown. Non-linear optimization is proposed,

implemented, and analyzed as a means of geolocating objects and providing confidence

estimates from passive satellite line-of-sight data. Non-linear optimization requires an

initial estimate. This estimate is provided by a triangulation method. The non-linear

optimization then improves upon this estimate iteratively by finding estimates that are more

likely to have produced the observed line-of-sight measurements. The covariance matrix of

the geolocation parameters being estimated is naturally produced by the optimization which

provides quantified confidence in the geolocation estimate. Simulations are developed to

provide a means of evaluating the performance of the non-linear optimization algorithm.

It was found that non-linear optimization can reduce the average error in geolocation

estimates, provide improved estimation confidence, and accurately estimate its geolocation

confidence for some subjects. The results from the theoretical development of the non-

linear optimization algorithm and its simulated performance is quantified and discussed.
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NON-LINEAR OPTIMIZATION APPLIED TO ANGLE-OF-ARRIVAL

SATELLITE-BASED GEOLOCATION

I. Introduction

This chapter introduces the motivation behind this research. It describes the problem

at hand and the associated research question. It discusses the assumptions and

limitations to this research. Lastly, it provides an outline for the rest of the thesis.

In this research, Non-Linear Optimization (NLO) algorithms are developed and

investigated as a means of localizing an object from Angle-of-Arrival (AOA) data.

Localizing an object means to estimate its position in space. For the purposes of this

research, the object which is being localized will be referred to as the subject. While AOA

data from any source may be used, this research focuses on data passively obtained by

satellites. Thus, the sensors do not transmit and receive an echo from the subject. Rather,

the sensor observes an emission from the subject. Localization provides an estimate of the

subject’s location, but without an estimate of the confidence in the subject location, this

information may have limited utility.

Therefore, NLO is also investigated for its ability to estimate the confidence it

provides in its localization. Furthermore, the algorithm must provide a means of intuitively

conveying this information to a user via some visualization.

To conduct this research, the NLO’s ability to localize an object and represent its error

is theoretically developed. The theoretical performance is compared to its performance

in simulated scenarios. A Scenario consists of a subject, observing sensors, and their

measurements. Two types of scenarios are produced: scenarios for verification and

performance evaluation.

1



The first type of simulation is used to verify that the NLO’s theoretical performance

matches its simulated performance. NLO is based on several assumptions. Therefore,

in scenarios where these assumptions are true, the theoretical results and simulated

results should match. This match verifies that the NLO has been correctly implemented.

Furthermore, these types of simulations are useful for comparing the NLOs. The NLOs

include different assumptions which add to their complexity. Thus, these results may

illustrate how much each assumption separately impacts their ability to localize the subject

and represent the confidence in their geolocation estimates.

The second type of simulation models a scenario where the NLOs’ assumptions

are imperfect. Therefore, these simulations are used to evaluate the performances of

NLOs in scenarios where their assumptions are approximations. The NLOs will produce

less accurate estimates if their assumptions are not perfectly true. By comparing the

performances of the NLOs in this scenario, the error resulting from unconsidered factors

may be investigated.

This research provides the theoretical development for three NLO algorithms of

varying complexity for localization using AOA data. It describes how these algorithms

are verified and how their performances are evaluated. The performance and development

of the confidence visualization scheme are also given. The next section describes how this

research started and why it is a relevant effort.

1.1 Background

In many applications, it is important to estimate the positions of objects and provide

the accuracy in these estimates via a process commonly referred to as geolocation or

localization [23], [27], [34]. Geolocation provides information on objects world-wide. One

of the most common means of estimating the position of an object is via the use of a Global

Navigation Satellite System (GNSS) such as the Global Positioning System (GPS) [16].

Each GPS satellite transmits a signal that includes the time the signal was sent, along with

2



the satellite’s position at that time. A receiver may then use this information from multiple

satellites to produce an estimate of the object’s position by a method known as trilateration

[26].

There is an inverse problem of sorts known as passive geolocation or source

localization [10]. In this problem, the emitter’s position is unknown and must be estimated

using measurements from multiple receivers. It is often assumed that the emitter does not

transmit its location. Such an emitter is said to be non-cooperative. In this research, the

subject is a non-cooperative emitter. Because the subject is non-cooperative, the receivers

must produce the information needed to localize the source.

Therefore, differences in the signals received by multiple observing sensors must be

exploited for source localization. The two kinds of data are used predominantly in passive

geolocation: Time Difference of Arrival (TDOA) and AOA (or equivalently Direction of

Arrival (DOA)) measurements [4], [11]. TDOA techniques use the differences between the

times when an emitter’s signal is received by multiple sensors to perform localization [29].

AOA methods use the direction or Line-of-Sight (LOS) to the emitter. If these LOS are

extended, they should meet at a point. Therefore, the point nearest to the intersection of the

LOS may be used to estimate the emitter’s location.

Passive geolocation is useful in many applications. For example, it may be useful

where GPS is not available. It also provides a method for geolocating non-cooperative

subjects [29], [32]. The ability to localize non-cooperative subjects has led to research

in satellite-based passive geolocation systems that use LOS information [17], [33]. LOS

geolocation must be used in some cases where the TDOA cannot be determined. For

example, if a signal is emitted continuously, then the start of the signal may be unknown.

The phase of the signal could also be exploited to determine the TDOA; however, if the

frequency of the signal is too high, then TDOA methods may be impossible. Therefore,

AOA geolocation techniques may provide geolocation when other methods cannot be used.
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There are several standard LOS geolocation schemes. These often employ some form

of triangulation [20], [29]. While these schemes are theoretically and computationally

simple, they do not account for the unique challenges faced by satellite geolocation

systems. These challenges are discussed below.

Challenge 1: the further a sensor is from the subject, the more an error in its LOS

produces an error in geolocation. This fact is illustrated in Figure 1.1. Errors in the LOS

measured by sensors that are close to the subject produce smaller geolocation errors than

sensors that are further from the subject. This issue is particularly relevant for satellite-

based sensors where the distances involved may be large. Thus, the closer sensor should be

weighted more heavily than a far-distant satellite since its error propagates over a shorter

distance. Because the weighting for each sensor depends on its accuracy and the emitter’s

location (which is unknown), the weights cannot be calculated.

 

𝛿𝜃 𝛿𝜃 

Figure 1.1: Error propagation and triangulation. Both satellites have the same angular
error. However, the satellite that is further from the subject (shown in red) has this error
propagated over a larger distance.

Challenge 2: Another factor ignored by triangulation is that satellites may be so far

from the subject that the subject may have moved a significant distance by the time its

emission is detected by the satellites. This problem is referred to as the time delay, and it
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is illustrated in Figure 1.2. Therefore, the satellite’s LOS is a measure of where the emitter

used to be rather than where it is when the sensor produced its measurement.

 
Figure 1.2: The time delay problem. The left-hand frame shows the subjecft when it
emitted a signal (shown in yellow). By the time this signal is received by the sensor (shown
in frame 2), the subject has moved a significant distance.

Challenge 3: Furthermore, satellites may not produce LOS measurements simultane-

ously. This problem is illustrated in Figure 1.3. Finding the point nearest the intersection of

these LOS assumes that the subject is in one place when these measurement are produced.

Each satellite’s LOS is measured at different times. For a moving subject, these LOS mea-

surements point toward the subject at different points along its path. Therefore, the subject

must be localized at a chosen time. Thus measurements produced closer to this time should

be given more weight.

Challenge 4: Furthermore, triangulation may not calculate the confidence in its

geolocation. Therefore, there is no perfect measure of how accurate or precise the

localization may be. For these reasons, it is desirable to find another geolocation method

which resolves the issues associated with satellites.

It has been noted [24] that geolocation typically has a nonlinear nature. Thus, the

NLO has been considered for geolocation [9]. However, NLO has never been applied to
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time 1  

time 0  

time 2  

Figure 1.3: Triangulation problem of asynchronous LOS measurement times. The LOS to
the subject has been measured at three separate points along its track (the red line).

geolocating satellite systems using LOS data. In addition, NLO’s ability to resolve the

aforementioned shortcomings has not been investigated.

1.1.1 Research Question & Significance.

The focus of this research is to investigate two queries: First, how well does NLO

geolocate the subject in a satellite system that measures AOA? Several NLOs might be used

(three are considered here). This question then extends to asking which NLO(s) perform

the best. Secondly, is there a useful means of estimating and visualizing the confidence in

the geolocation estimates it provides? If the NLO is capable of overcoming triangulation’s

shortcomings, it may be able to provide users with several benefits.

First, if NLO compensates for the sources of error in satellite geolocation, then

position estimates will be more accurate. The NLO may also provide better confidence

than triangulation in its estimate, thereby providing a benefit to the user. This improved
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confidence may allow for other, more accurate, sensors to hone in on the emitter more

quickly.

1.2 Research Assumptions and Domain

This research involves multiple assumptions and practical limitations. In addition, this

research evaluates the research question only for a specific set of scenarios. The following

section discusses the research assumptions.

1.2.1 Assumptions.

For most passive geolocation techniques, knowledge of the sensors’ positions

(satellites for the purposes of this research) is requisite. In reality, there may be some

uncertainty in sensor locations. For the purposes of this research, this issue is ignored and

it is assumed that the satellites’ positions are known absolutely.

The Lines-of-Sight (LOS) to the subject is also uncertain. Measurements typically

have two sorts of errors: systematic and stochastic errors. In this research, it is assumed

that the errors are stochastic and uncorrelated. Stochastic errors are typically described

by a probability distribution function. A Gaussian distribution is used as a common first

assumption. This distribution is assumed for random variables in this research.

The distribution is described in mathematical detail in Chapter 2. It is also assumed

that these measurements are Independent and Identically Distributed (IID). That is, each

measurement is independent of the measurements which came before and after it. Gaussian

distributed random variables are often assumed to be IID.

In addition to assumptions about the measurements and the sensors, assumptions are

made about the subject. Geolocation performance may vary with the type of subject. To

simplify this research, only one type of subject is considered. Given the discussion on the

sources of error discussed in Section 1.1, it is assumed that a Space Vehicle (SV) is the

most challenging subject on average. An SV is most challenging in the sense that SVs are

assumed to result in worse accuracy and confidence than any other subject on average. SVs
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produce the worst geolocation performance because they are both the fastest subjects that

might be observed and their flight paths are nonlinear.

It is also assumed that the times at which each satellite receives a signal is exactly

known. This assumption is justified for the following reason: the times at which the

satellites produce their measurements matter only because the emitter may be in motion.

Therefore, if the reception time is off by some amount, then the emitter may have moved

some distance during that time. Given the accuracy of satellite clocks, even the fastest

emitter could not move an appreciable distance over the duration of the timing error. In

addition to these assumptions, there are practical constraints and limitations.

1.2.2 Limitations.

NLO is fundamentally limited in that it optimizes over a model of the scenario. The

model describes the mathematical relationship between the subject’s motion and satellite

positions and the LOS measurements. The model will not perfectly represent the subject’s

motion.

Real subjects will have velocity, acceleration, jerk, jounce, and other higher order

moments. For example, if the NLO is constructed to account for velocity, then it assumes

that the emitter is approximately moving in a straight line over the duration of the

measurements used for geolocation. Because there is a limit to the number of parameters

that can be included, the NLO cannot include arbitrary subject motion in its model. In this

research, only the position and velocity of the emitter and the time delay from the emitter

to the satellite are optimized. This thesis evaluates whether satisfactory results may be

achieved given these NLO’s models.

A further practical limitation of this research is real LOS data. No real data was

available for this research. Likewise, typical confidence in LOS is unknown. Therefore, the

NLO is evaluated on simulated data with an arbitrary confidence in the LOS measurements.

The scope is this research is described in the next section.
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1.2.3 Scope.

This research is strictly focused on satellite based geolocation. Other platforms

could be used in conjunction with a satellite system. The effects of terrestrial sensors

on geolocation performance are not considered. Furthermore, TDOA and LOS information

could be available. In this case both could be used in conjunction to provide geolocation

estimates. This is not considered.

Neither is the full range of possible NLO algorithms. Only three NLO algorithms

are considered here. It is anticipated that these three optimize the most significant unique

sources of error as previously described.

Another geolocation task that this research ignores is distinguishing LOS information

for multiple subjects. It may be ambiguous which LOS measurements relate to which

subject, and this difficulty is compounded if the number of emitters is unknown. For

example, two emitters could be at nearly the same LOS relative to a satellite, but their

distances to the satellite could vary drastically. It would be difficult to determine which

emitter corresponds to which LOS.

The scope of this research also excludes the computational speed of the NLO. There

may be requirements regarding the speed at which a geolocation algorithm performs. The

speed of the NLO is recorded, but it is not used as grounds for evaluating the NLO’s

performance.

1.3 Evaluation Methodology

To properly evaluate the benefits provided by the NLO, its geolocation performance is

evaluated in four ways: the mean absolute error in the geolocation estimate, the bias in its

estimate, the confidence in its estimate, and the accuracy of its confidence estimate. These

are collectively referred to as performance of the geolocation algorithm. These values are

anticipated theoretically and calculated in simulated scenarios.
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The theoretical properties of the NLO’s performance metrics are developed analyt-

ically. The theoretical performance is then verified by simulated scenarios in which the

NLO’s assumptions are exact. Upon verification of the NLOs theoretical performance, the

NLO is used in simulated scenarios where the NLO’s assumptions are approximately true.

The NLO’s performances in these scenarios are compared against each other and another

common LOS geolocation algorithm: a Triangulation Algorithm (TA). The TA does not

take into account the unique sources of error posed by satellite systems. Thus, the com-

parison between the TA and NLO provides data on the performance increase or decrease

provided by optimizing for these sources of error. The comparison between the NLO’s per-

formances provides the geolocation improvement resulting from adding model complexity

to the NLO.

To estimate the mean absolute error and bias of the algorithms, truth data and noisy

LOS measurements are simulated. The truth data are the true LOS to the subject and the

subject’s position (and velocity if relevant). The TA and NLO use the noisy data, and their

geolocation estimates are compared to the truth data. This comparison provides a metric

for quantifying the accuracy provided by the NLO and TA.

The confidences provided by the NLOs and TA are described by the variance in their

estimates. The comparison between their true confidence and the confidence they estimate

is also calculated. This is the accuracy in their confidence estimates. These metrics

are calculated from synthesized scenarios. Monte Carlo Simulations (MCS) are used to

provide the algorithms’ true confidences. The NLOs have a means of calculating their

confidence without MCS. Therefore, their confidence estimates are compared against the

confidence estimates produced from MCS. The confidence and accuracy of the confidence

estimates provided by the NLOs are compared. As mentioned in Section 1.2, three NLOs

of various complexity are evaluated. Therefore, the benefit of adding more parameters (and

complexity) to the NLO is analyzed.
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To find the performance differences provided by the NLOs, the NLO is developed in

three stages of optimization. The first NLO optimizes the emitter’s position, the second

NLO optimizes position and velocity, and the final NLO includes the time delay. This

research compares the accuracy and confidence provided by these three NLOs to evaluate

the performance difference resulting from the added complexity.

1.4 Overview

Chapter 2 begins with an explanation of the data used by the geolocation algorithms.

It proceeds by explaining how simulations create these data and how the most challenging

subject, the SV is synthesized. The chapter proceeds by describing and deriving the

mathematics behind the TA and general NLO algorithms. The chapter closes by explaining

how the confidence estimates provided by the geolocation algorithms are calculated and

visualized.

Chapter 3 discusses how the theoretical building blocks described in Chapter 2 come

together in simulations. It describes the combined synthesis of the satellites, their LOS

measurements, and the subject. Next, it is explained how specific types of scenarios are

simulated to verify the functionality of the NLOs. This is followed by an explanation of

each NLO and the subtleties of their operation. The chapter closes by discussing how the

performance metrics are calculated and why they were chosen.

Chapter 4 provides the accuracy and confidence data produced by the methodology.

The methodology is used to verify the functionality of the NLO algorithms and draw

comparisons between their performances with each other and the TA. Chapter 5 begins by

describing conclusions drawn from the results, discusses the impact of these conclusions,

and ends by describing unexplored questions and future work.
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II. Background

The mathematical foundation and theory underlying this thesis is presented in this

chapter. Section 2.1 defines the coordinate systems used throughout this thesis and

describes the theory behind the model for the data. Section 2.2 describes the mechanics

behind the flightpath of the Space Vehicle (SV). The Triangulation Algorithm (TA) which

is used for an initial estimate of the emitter’s location is given in Section 2.3. The linear

algebra that the NLO is based on is detailed in Section 2.4. Section 2.5 presents the theory

behind the technique for visualizing the confidence in the NLO. Monte Carlo Simulations

(MCS) as a means of visualizing the confidence in the TA are given in Section 2.6. This

section also explains how MCS are used as truth for geolocation confidence.

2.1 Coordinates and Data

The standard coordinate system that is used throughout this research is Earth-Centered

Earth-Fixed (ECEF) coordinates. The definition of ECEF coordinates is described [33] as

follows. It is a right-handed coordinate system with the origin at the center of mass of the

Earth, the x-axis protrudes at the zero meridian, the z-axis lies along the earth’s axis and

points toward the North pole, and the y-axis is along the cross product of the z-axis and

x-axis. The ECEF coordinate system is illustrated in Figure 2.1.

The LOS data is described by two spherical angles in the ECEF coordinate system.

The definition of these angles relative to the ECEF coordinate system is shown in

Figure 2.2. In this figure, the magenta line ψ represents an arbitrary Cartesian LOS vector

as given by

ψ =

[
ψx ψy ψz

]>
(2.1)
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Figure 2.1: Earth-Centered Earth-Fixed coordinates definition

The yellow line represents its projection onto the xy plane. Therefore, θ is the azimuthal

angle measured clockwise about the z-axis between the x-axis and the projection of ψ onto

the xy plane. φ is the zenith angle measured between the z-axis and ψ. The conversion from

spherical to Cartesian coordinates is given by

ψx = sin(φ) cos(θ)

ψy = sin(φ) sin(θ) (2.2)

ψz = cos(φ)

Note that ‖ψ‖ = 1 because LOS measurements describe only the direction to the subject.
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Figure 2.2: Spherical and Cartesian coordinate convention

The conversion from ECEF Cartesian coordinates to spherical coordinates [21] is

given by

θ = tan−1
(
ψy

ψx

)
(2.3)

φ = tan−1


√
ψ2

x + ψ2
y

ψz


It is arbitrarily chosen that AOA or LOS to the subject is measured in spherical coordinates

by the satellites. If the positions of the sensor s and the subject x are given as Cartesian

vectors referenced to the origin of the ECEF coordinate system, then the LOS vector is
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simply their difference vector. Thus,

ψ =
x − s
‖x − s‖

(2.4)

There are imperfections in any measurements. Therefore, the AOA measurements are

taken to be random. As per the discussion on research assumptions in Section 1.2.1, a

Gaussian (or Normal) distribution is chosen for the measurement’s distribution. Therefore,

the noisy AOA measurements are modeled as

θ̃ ∼ N
(
µθ, σ

2
θ

)
(2.5)

φ̃ ∼ N
(
µφ, σ

2
φ

)
In these equations µ represents the mean and σ represents the standard deviation of the

respective distribution. It is assumed that there is no bias in the AOA. Thus, if the

subject were stationary, µθ and µφ are the θ and φ angles associated with ψ as given

in Equation (2.3). With the coordinate system defined, the flightpath of an SV may be

described. The SV described in the following section is used to evaluate the performance

of the geolocation algorithms.

2.2 Space Vehicle Path

To use a geolocation algorithm, there must be a subject. There are any number of

subjects that might be used. Thus, a particular subject was chosen for simplicity. The

Space Vehicle (SV) is used to evaluate the performance of the geolocation algorithms. As

discussed in Section 1.2.1, an SV was chosen as the subject because it is expected to be the

most challenging subject for geolocation.
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An SV could be a dead satellite or space junk. These may be in orbit. For most

orbits, acceleration is nearly constant. To make this subject more challenging, a reentry

phase was added to introduce rapid deceleration into the SV model. Realistically, an SV

would decelerate due to friction in the atmosphere and quickly achieve terminal velocity.

To maintain the effects of acceleration for longer periods of time, the SV decelerates until it

is at rest at its crash location. Thus, there are two phases to the SV’s flightpath: the orbital

and reentry phases.

For modeling simplicity, the SV flightpath is modeled in reverse. The SV is modeled

in two phases. There is an acceleration phase and an orbital phase. These are modeled

separately and put together at the end of this section. The SV flightpath begins with its

crash location and then accelerates toward its orbital phase. The orbiting phase is modeled

as a section of an elliptical path. The trajectory is simulated using the mathematical

development that follows. Figure 2.3 illustrates the SV flightpath geometry. The flightpath

is simulated in the xz-plane, and then randomly rotated in 3-D.

The standard form of an ellipse is given by

(z − cz

a

)2
+

( x − cx

b

)2
= 1 (2.6)

This equation will be used to reach the parametric form of an ellipse which is used

throughout the rest of this research.

In Equation (2.6), a and b define lengths of the ellipse’s axes, the largest of which

defines the length of the semi-major axis. The smaller value is the length of the semi-minor

axis. To reach the parametric form, the standard form of an ellipse is parameterized as

z = a sin(φ) + cz (2.7)

x = −b cos(φ) + cx
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

r

b Ce



a



e()| 

z-axis

x-axis

e()| 

Figure 2.3: Geometry for space vehicle flightpath. Note that for visualization purposes,
this figure drastically exaggerates the size of the ellipse.

Substituting the parameterized variables from Equation (2.7) into Equation (2.6)

produces

(
a sin(φ) + cz − cz

a

)2

+

(
−b cos(φ) + cx − cx

b

)2

= 1

sin2 φ + cos2 φ = 1

This equation is the trigonometric identity. Therefore, when z and x are parameterized

as given in Equation (2.7), Equation (2.6) becomes a tautology. Thus, z and x satisfy

Equation (2.6) regardless of the value of φ. Therefore, φ is a parametric variable for z and
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x. An ellipse may then be described as the vector-valued function

e(φ) =

[
−b cos φ + cx a sin φ + cz

]>
(2.8)

From Figure 2.3, the center of the ellipse Ce lies along the z-axis. Therefore, cx = 0

and Equation (2.8) is simplified to

e(φ) =

[
−b cos φ a sin φ + Ce

]>
(2.9)

This elliptical model will be used in Chapter 3 to simulate the SV flightpath.

Therefore, the ellipse’s parameters must be simulated. The following discussion describes

how these parameters are established in the simulations. The following values are randomly

generated: Ce, the SV’s apogee, and γ. Therefore, one of the ellipse’s principle axes may

be found via

a = apogee + r −Ce (2.10)

where r is the approximate radius of Earth and is given the value 6,378,100 meters.

Next, b is calculated. However, to find b, β must be found first. The z-component of

e(φ)|−β shown in Figure 2.3 is used to find β in terms of other known quantities as given by

a sin−β + Ce = r cos
γ

2

−a sin β = r cos
γ

2
−Ce

sin β =
Ce − r cos γ

2

a

β = arcsin
Ce − r cos γ

2

a
(2.11)
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β has been determined in terms of known quantities. Therefore, the value of b may be

determined by using the x-component of e(φ)|−β as given by

−b cos−β = −r sin
γ

2

b =
r sin γ

2

cos β
(2.12)

Equations (2.10) and (2.12) provide the equations needed to describe the ellipse given in

Equation (2.9). Rather than parameterizing the flightpath as a function of φ, the flightpath

must be described as a function of time t. The SV impact time is arbitrarily defined to be

at t = 0. (Recall that the SV’s flightpath is simulated in reverse.) The point of impact is

chosen to be at e(φ)|−β. The flightpath is then modeled as

e(t) =

[
−b cos (ωt − β) a sin (ωt − β) + Ce

]>
(2.13)

where ω is the angular velocity of the SV. The flightpath description is nearly complete;

however, it does not include the reentry phase. During the reentry phase, the SV starts at

rest and accelerates until it reaches its orbiting velocity. Note that because the flightpath is

elliptical, the orbiting velocity slightly oscillates. The altitude of a typical SV at the end of

its reentry phase is approximately known. Therefore, α is the angle that satisfies

a f = |e(α)| − r (2.14)

This results in a quadratic equation, the solution to which is given in the code given in

Appendix A. The value of α will be used for the synthesis of the reentry phase. The reentry

phase is given in mathematical form, and will be followed by a discussion of the properties

that make this mathematical model attractive.
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The flightpath during the reentry phase er(t) is

er(t) =

[
−b cos

(
t
t f
ωt − β

)
a sin

(
t
t f
ωt − β

)
+ Ce

]>
(2.15)

where t f ,
α + β

ω
. (2.16)

t f is defined this way because t = t f when ωt − β = α. A realistic orbital velocity v f is

more important for realism than the value of t f . Therefore, t f is left as a variable, and a

relationship must be found between v f and t f . The value of t f must be found as a function

of v f . The relationship between these values is found by finding the velocity of the SV as a

function of time vr(t), ie

vr(t) = |
d
dt

er(t)|

=

√(
2bω

t
t f

sin (ωt − β)
)2

+

(
2aω

t
t f

cos (ωt − β)
)2

= 2ω
t
t f

√
b2 sin2 (ωt − β) + a2 cos2 (ωt − β).

v f = vb(t f ) = 2ω
t
t f

√
b2 sin2 α + a2 cos2 α

ω =
v f

2 t
t f

√
b2 sin2 α + a2 cos2 α

(2.17)

This equation is used as follows. First, α is found by solving Equation (2.14). Next,

Equation (2.16) is used to linearly relate t f and ω. Finally, ω is found in terms of v f by

Equation (2.17).

The orbital phase is the last portion of the flightpath that needs to be defined. Its

definition is

eo(t) =

[
−b cos

(
2ωt − ωt f

)
a sin

(
2ωt − ωt f

)
+ Ce

]>
(2.18)

This definition has two key properties. It ensures that the velocity and position of the SV

at t = t f are the same for both phases of the flightpath. This ensures that the transition is
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continuous for position and velocity; however, higher order moments such as acceleration

and jerk will not be constant. Therefore, the final equation of motion for the SV flightpath

is given by

e(t) =


[
−b cos

(
t
t f
ωt − β

)
a sin

(
t
t f
ωt − β

)
+ Ce

]>
t ≤ t f[

−b cos
(
2ωt − ωt f

)
a sin

(
2ωt − ωt f

)
+ Ce

]>
t > t f

(2.19)

This final flightpath equation is used to simulate the motion of the subject. The next

section describes a typical AOA triangulation method for geolocation.

2.3 Triangulation Algorithm

If extended, LOS measurements from several satellites should nearly intersect. The

Triangulation Algorithm (TA) estimates the subject’s location as the point where these LOS

nearly intersect as illustrated in Figure 2.4. In this research, the TA serves two purposes.

First, its performance is compared against the performance of the NLO. This research

proposes the NLO as a means of mitigating the factors that the TA doesn’t account for such

as system geometry, subject motion, and time delay. Therefore, the NLO should provide

improved accuracy and confidence in its geolocation estimates than the TA. Second, the

NLO requires an initial guess of the subject’s position to begin. The TA provides the initial

guess.

The mathematical foundation for the TA is similar to that given in [6] and [15]. The

following discussion of the TA has been presented in [5]. The first step in this algorithm is

to describe the minimum distance di to the ith LOS as a function of the emitter’s position x.

A total distance D(x) is then defined as given by

D(x) =

N∑
i=1

d2
i (x,ψi)wi (2.20)
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Figure 2.4: Triangulation Algorithm Notion. The Triangulation Algorithm’s geolocation
estimate minimizes the distances to the lines-of-sight.

where wi is a weighting term defined on [0, 1] meant to describe the confidence in the ith

sensor’s LOS measurement.

The TA’s geolocation estimate is defined as the point in space that minimizes D.

d2
i (x,ψi) is quadratic in each component of x. D is also positive since it is the sum of

squared values. Therefore, D has one minimum. This minimum is the value of x that is the

solution to

∇D(x) = 0. (2.21)

This equation results in a system of three linear equations in three unknowns. This

system may then be solved by any standard linear algebra technique to find the TA’s

geolocation estimate. The next section describes the mathematical theory underlying the

NLO.
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2.4 NLO Mechanics

This section introduces the mathematical theory for the NLO. NLO is a means

of solving systems of nonlinear equations. It is also known as nonlinear regression in

statistics. Specifically, the Gauss-Newton method is utilized in this research though other

approaches could conceivably be used. NLO begins with an initial approximation for the

solution. The NLO is based on the assumption that a system of nonlinear equations may

be approximated by a linear system in the neighborhood of the solution. The linear system

is solved for a new estimated solution. It is anticipated that the estimated solution will be

closer to the true solution to the nonlinear system of equations than the initial guess.

This process iterates resulting in an estimated solution that converges to the true

solution to the nonlinear system. In this way, the analytically intractable problem of solving

the system of nonlinear equations is solved to a desired level of accuracy by iteratively

solving linear systems of equations.

The following discussion will introduce NLO with a simple case that provides valuable

intuition which carries forward into much more complicated versions of the problem. The

simple case is a classic nonlinear solver known as Newton’s method. Newton’s method is

developed and discussed in the following section similar to the explanation given in [21].

2.4.1 Newton’s Method and Intuition.

Newton’s method was originally posed as a means of finding the roots of polynomials

of any order. This is useful because there is no analytical means of finding the roots of a

fifth or higher order polynomial. Newton’s method is applicable to more than polynomials.

It can be applied to most differentiable functions. Therefore, for a function f (·), Newton’s

method may be used to find values of x such that f (x) = 0. While Newton’s method was

originally posed for finding the roots of functions, it is suited to find the values of x that

produces any output c from the function. Simply, define some new function g(x) = f (x)− c

and use Newton’s method to find the roots of g(·).
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The first steps in Newton’s method are illustrated in Figure 2.5. The objective of

Newton’s method is to find the input xd to some function f (·) that produces a desired output

f (xd). Therefore, Newton’s method finds the value of x given by

{x| f (x) = f (xd)} (2.22)

There may be several values of x for which f (·) produces f (xd). The particular solution

that is sought after (the desired value of x) is xd.

 

𝑓(𝑥0) 

𝑓(𝑥1) 

𝑥0 𝑥1 𝑥𝑑  

𝑓(𝑥𝑑) 

Figure 2.5: Demonstrating the first two steps in Newton’s method

In Newton’s method, both f (xd) and an initial guess at xd called x0 are known. It

is assumed that f is approximately linear in the neighborhood about x0. Therefore, the

function over this region may be approximated by

f (x) ≈ f ′(x0)(x − x0) + f (x0) (2.23)

The initial guess is represented by the blue point in the figure. Next, the difference

between f (x) and f (xd), typically referred to as the residual ∆ f , is found. Using the linear

approximation and solving this equation for x where x = xd should produce an estimate

of xd called x̃d. Equation (2.23) is translated into point-slope form and a more intuitive
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notation, ie

∆ f =
d f0

dx
(x̃d − x0) (2.24)

Solving this equation for x̃d yields

x̃d = x0 + ∆ f
dx
d f0

(2.25)

f (x̃d) should be closer to the objective value f (xd) than f (x0). x̃d is represented in Figure 2.5

by the yellow point. Next let, x1 = x̃d. This process now repeats by letting x1 be the initial

guess for the new iteration. This is illustrated by the purple line. The value of x̃d will

quickly approach the solution Equation (2.22) if locally linear. This iteration stops once

the residual ∆ f has reached some small value chosen by the user.

It should be noted that this technique may fail as a result of using an inaccurate starting

point. Two cases are demonstrated in Figure 2.6.

 

Figure 2.6: Cases where Newton’s method fails. The top starting point (the triangle) is at a
peak, so the slope is 0 at this point. The lower starting point (the square) will converge to
the black point rather than the green point.

In Figure 2.6, the yellow triangle and square are initial guesses, the green point is the

desired point, and the black point has the same value of f (·) as the green point. The guess
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at the local maximum in this plot is an example of plateauing. Here the slope is almost

zero. Thus, the dx
d f term in Equation (2.25) is undefined or nearly infinite.

The lower initial guess is another example of a inaccurate starting point. Here

Newton’s method will converge to the black point rather than the green point. If xd

represents a physical value, then the value of x at the black point may be absurd. For

instance, in geolocation, the purple point may represent a subject with a speed greater than

the speed of light. Convergence to an undesired solution is the more common cause of

failure in Newton’s method. For this reason, the initial guess at xd must be close to the true

value.

All of the properties and problems regarding Newton’s method have analogous

counterparts in NLO. Therefore, the intuition provided by Newton’s method carries

forward into the NLO problem where systems of nonlinear equations are considered. Like

Newton’s method, NLO approximates a nonlinear system of equations with a linear system

of equations. Linear systems of equations are iteratively solved to approximate the solution

to the nonlinear problem.

2.4.2 Linear Least Squares.

NLO operates on an overdetermined system of nonlinear equations. Since a system

of nonlinear equations can often not be solved analytically, it is locally approximated by a

system of linear equations [30]. In many applications, the system of nonlinear equations is

overdetermined. That is, there are more equations than unknowns.

Therefore, a least squares solution to the linear system is used. The objective of

linear least squares is to solve the following system for x [31]. Note that the following

development of the linear (and weighted) least squares solution follows the development

given in [31]. The development starts with

Ax = Ω (2.26)
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where A is m × n where m ≥ n, x is an n × 1 vector, and Ω is a m × 1 vector. In the

general case, where m may be greater than n with rank(A) = n this system is unsolvable.

Therefore, the “closest” solution is found. The closest solution is defined as the solution

which minimizes

E2 = ||Ω − Ax||2 (2.27)

where E is a value representing the error in a solution to Equation (2.26).

The value of x that minimizes E2 is the least squares solution to Equation (2.26). From

[31], the least squares solution x̂ is the solution to

A>Ax̂ = A>Ω (2.28)

Note that A>A is invertible if and only if the columns of A are linearly independent.

This is true for most cases involving random data, especially if m >> n. Therefore, the

least squares solution x̂ is

x̂ = (A>A)−1A>Ω (2.29)

Some systems of equations may be attenuated by random noise. In this case, the

equations in the system may not be equally reliable. For this situation, the best solution to

Equation (2.26) is the solution that is most likely to minimize

E2 = ||WΩ −WAx||2 (2.30)

where W is a matrix of weights for each equation. This solution is known as the weighted

least squares solution xW. It is the solution to

WAx̂W = WΩ (2.31)
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The solution to this equation is given by

(WA)>WAx̂W = (WA)>WΩ

A>W>WAx̂W = A>W>WΩ

x̂W = (A>W>WA)−1A>W>WΩ. (2.32)

Notice that the symmetric matrix W>W appears twice in Equation (2.32). This matrix

has an important stochastic interpretation. Suppose that the elements of Ω are normally

distributed. In this case,

Σ−1 = W>W (2.33)

where Σ−1 is the inverse of the covariance matrix Σ of Ω [8], [31]. The covariance matrix

is of the form

Σi j = σiσ j (2.34)

where σ2
i is the variance in the ith equation of Equation (2.31). Note that some of the

randomly attenuated equations may be interrelated. Random attenuation in one equation

may affect another. This is accounted for by the covariance terms of Σ. The covariance

terms are Σi j, i , j.

Therefore, in the presence of a normally distributed Ω, Equation (2.32) may be

reduced to

x̂W = (A>Σ−1A)−1A>Σ−1Ω (2.35)

This equation gives the weighted least squares solution to Equation (2.31). Given this

discussion, the nonlinear weighted least squares problem that the NLO solves may be

developed.
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2.4.3 Weighted Nonlinear Least Squares.

NLO is a method for approximating the weighted nonlinear least square solution to a

system of nonlinear equations. LetΩ(x) be an m× 1 vector of m nonlinear functions where

Ω(x) =

[
f1(x1) f2(x2) . . . fm(xm)

]>
(2.36)

x =

[
x1 x2 . . . xm

]>
(2.37)

In this problem, a desired output Ω(xd) is known. A particular solution xd is desired given

by

{x|Ω(x) = Ω(xd)} (2.38)

where xd is the input vector that produces the desired output Ω(xd). Compare

Equation (2.38) to Equation (2.22). These are very similar except that Ω(x) represents

a set of functions.

Because the system of nonlinear equations may be overdetermined, there may not be

a solution to Equation (2.38). Even if the system were exactly determined, an analytical

solution may be intractable. Therefore, the objective is to find the weighted least squares

solution. However, since the system of equations is nonlinear, even the weighted least

squares solution cannot be analytically calculated as in Equation (2.35). The Gauss-Newton

method (which is called NLO in this thesis due to the application) may be employed to

resolve this difficulty [2].

In the region about a some initial guess of xd called x0, it is assumed that

Ω(x) ≈ Ω(x0) + J(x)(x − x0) (2.39)
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where J(x) is a matrix known as the Jacobian [2]. The Jacobian is defined as

J(x) =



(∇ f1(x))>

(∇ f2(x))>

...

(∇ fm(x))>


=



∂ f1(x)
∂x1

∂ f1(x)
∂x2

. . . ∂ f1(x)
∂xm

∂ f2(x)
∂x1

∂ f2(x)
∂x2

. . . ∂ f2(x)
∂xm

...
...

∂ fm(x)
∂x1

∂ fm(x)
∂x2

. . . ∂ fm(x)
∂xm


(2.40)

Next, Equation (2.39) is expressed in an intuitive form similar to that given in

Equation (2.24), ie

∆Ω = J(x0)(xd − x0) (2.41)

where ∆Ω(x) is the residual. To make the equation’s intuitive nature clear, let ∆x = xd −x0,

so the equation is expanded as



∆ f1

∆ f2

...

∆ fm


=



∂ f1(x0)
∂x1

∆x1 +
∂ f1(x0)
∂x2

∆x2 + · · · +
∂ f1(x0)
∂xm

∆xm

∂ f2(x0)
∂x1

∆x1 +
∂ f2(x0)
∂x2

∆x2 + · · · +
∂ f2(x0)
∂xm

∆xm

...

∂ fm(x0)
∂x1

∆x1 +
∂ fm(x0)
∂x2

∆x2 + · · · +
∂ fm(x0)
∂xm

∆xm


(2.42)

From this equation, it can be seen that the Jacobian is analogous to the derivative of f (x) in

Equation (2.23).

Similarly to Newton’s method, the objective is to solve Equation (2.41) for xd. J(x0)

is an m×n matrix where m ≥ n. Often, this system is overdetermined and unsolvable. Also

note that weighting has not been included. Therefore, the weighted linear least squares

solution x̂d to Equation (2.41) is the solution to

WJ(x0)(x̂d − x0) = W∆Ω (2.43)
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The solution to this equation for x̂d as given by Equation (2.35) is

x̂d = x0 + (J(x0)>Σ−1J(x0))−1J(x0)>Σ−1∆Ω (2.44)

As in Newton’s method, the value of x̂d should produce a value of Ω(x̂d) that is closer to

the desired output Ω(xd). Therefore, x̂d becomes the guess for the second iteration of the

method by letting x1 = x̂d. The process then repeats. After multiple iterations, the value of

x̂d converges to the weighted least squares solution of Equation (2.38). The process halts

once the residual reaches a value specified by the user.

Recall from Section 2.4.2 that in the presence of Gaussian noise, Σ is the covariance

matrix of that distribution. Furthermore, it is shown in [18] that x̂d converges to the local

maximum likelihood estimate. That is, x̂d converges to the most probable x given Ω and

ΣΩ. The remaining task is finding a means of describing the confidence in x̂d.

Fortunately this method naturally produces a means of computing the confidence in

x̂d. The next section describes how NLO is used to calculate the confidence and produce

an associated visualization.

2.5 Estimating and Visualizing Confidence

Sections 2.3 and 2.4 provide the basis for the geolocation algorithms developed in this

thesis; however, the visualization scheme has not been addressed. The objective of this

section is to develop a method for visualizing the confidence in an estimated parameter x̂.

This will be accomplished with the covariance matrix of x̂ called Σx.

The covariance matrix describes the variance and covariance in x̂. The covariance

matrix needs to be calculable and put into a visually intuitive form. The visualization

scheme will be given first, followed by an explanation of how Σx is calculated.

A method for creating this visualization is found in [3]. This visualization method

begins by calculating the Cholesky Decomposition of the covariance matrix. It decomposes
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a matrix Σx as [31]

Σx = LL∗ (2.45)

where L is a lower triangular matrix. Note that the Cholesky Decomposition only operates

on Hermitian positive-definite matrices [3]. Fortunately, all covariance matrices are

Hermitian and positive semi-definite [31]. In this way, L is analogous to the square-root of

Σx.

Using L, it is possible to generate samples of x that follow a distribution with a

covariance matrix of Σx from normally distributed samples y as given by

Y ∼ N (0, I)

x̂ = LY (2.46)

→ x̂ ∼ N (0,Σx)

This procedure will create a scatter of x̂ values. However, if rather than pulling Y

values from a normal distribution, they are samples of a sphere of radius σ, then x̂ will

sample the contour of its distribution associated with σ. The contours of Σx are ellipsoids

[2]. Therefore, the process for visualizing these ellipsoids is given by

Y ∼ Sphere(Radius = σ)

x̂ = LY

→ Plot Surface(x̂)

where σ is the standard deviation associated with the ellipsoid.

The standard deviation relates to a percent probability that the samples x̂ should exist

inside of the ellipsoid. Thus the percent probability pσ that x will exist inside of an ellipsoid
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generated with a given σ may be found. This ellipse is what is referred to in this thesis

as the error surface. It should be noted that the equation relating pσ and σ depends on

the dimension of Σx. It is commonly known that in a 1-D normal distribution that 3σ

corresponds to a 99% probability. This is not true for a 3-D normal distribution. For a 3-D

normal distribution, 3σ corresponds to a probability of 97%.

This procedure provides a method for creating a visualization of the covariance matrix;

however, it does not provide a means of finding the covariance matrix. Fortunately, the

covariance matrix can easily be produced for the NLO. The following development closely

follows that given in [3]; however, it has been tailored to this application. First the definition

of Σx is given by

Σx , E[(xd − x̂d)(xd − x̂d)>] (2.47)

where xd is the value of x that solves Equation (2.38) exactly. Recall that the reason xd

cannot be exactly found is because of the random noise in the system. In Equation (2.47),

x̂d is a random variable representing the weighted nonlinear least squares solution given by

Equation (2.44). Next, let the noise in the system be described by a random variable ν with

the properties

E(ν) = 0 (2.48)

E(νν>) = ΣΩ. (2.49)

Using this description of the noise in the system and ignoring the shift x0, the left hand

side of Equation (2.43) is rewritten as

J>W>WJx̂d = J>W>WJxd + J>W>Wν. (2.50)
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The only random attenuation in the system is due to ν. Therefore, the covariance

matrix is Σ−1
Ω

= W>W. Also keep in mind in this development that x̂d and xd are random

variables. Equation (2.50) is then simplified as

J>Σ−1
Ω J(x̂d − xd) = J>Σ−1

Ω ν. (2.51)

This equation will be used to find a simple means of computing ΣΩ in terms of known

values. ΣΩ is found by manipulating both sides of Equation (2.51), ie

E
[(

J>Σ−1
Ω J(x̂d − xd)

) (
J>Σ−1

Ω J(x̂d − xd)
)>]

= E
[(

J>Σ−1
Ω ν

) (
J>Σ−1

Ω ν
)>]

E
[(

J>Σ−1
Ω J(x̂d − xd)

) (
(x̂d − xd)>J>Σ−1

Ω J
)]

= E
[(

J>Σ−1
Ω ν

) (
ν>Σ−1

Ω J
)]

(
J>Σ−1

Ω J
)

E
[
(x̂d − xd)(x̂d − xd)>

] (
J>Σ−1

Ω J
)

= J>Σ−1
Ω E

[
νν>

]
Σ−1
Ω J(

J>Σ−1
Ω J

)
E

[
(x̂d − xd)(x̂d − xd)>

] (
J>Σ−1

Ω J
)

= J>Σ−1
Ω J

Σx
(
J>Σ−1

Ω J
)

= I

Σx =
(
J>Σ−1

Ω J
)−1

(2.52)

This equation provides a simple means of calculating Σx from the known matrices J

and ΣΩ. Next, the location of the error surface in space must be determined.

To this end, it will be demonstrated that x̂d is an unbiased estimate of xd. By taking

the expected value of both sides of Equation (2.51) we have

E
[
J>Σ−1

Ω J(x̂d − xd)
]

= E
[
J>Σ−1

Ω ν
]

J>Σ−1
Ω J(E [x̂d] − xd) = J>Σ−1

Ω E [ν]

J>Σ−1
Ω J(E [x̂d] − xd) = 0 from Equation (2.48)

xd = E [x̂d] (2.53)
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This final equation follows since it is assumed that J>ΣΩJ is invertible and therefore

has no null space [31]. This demonstrates that the distribution of x̂d is centered on xd and

thus is an unbiased estimate.

So far, this visualization method is only applicable to the NLO because no method has

been provided to calculate Σx for the TA. Moreover, no method has been given to evaluate

if the covariance matrix of x̂d accurately estimates the confidence in x̂d. These issues are

addressed in the next section.

2.6 Monte Carlo Simulations

In this section, the theory and utility of Monte Carlo Simulations (MCS) are discussed.

MCS are investigated here as a means of providing the confidence surface for the TA and

the NLO. The confidence surface for the NLO produced by MCS is treated as truth for

comparison against the confidence surface produced via Equation (2.52). The outputs of

some systems operating on random variables may not be analytically determined, but MCS

provides a means of statistical inference from simulations [12], [28].

The fundamental idea behind MCS is to determine the distribution of a system’s output

from many simulated inputs produced from the inputs’ distributions. In our case, for a

given sensor configuration, LOS measurements are simulated randomly according to their

distributions. Each set of random measurements is used to estimate the subject. This

produces a distribution of subject states. This method is illustrated in Figure 2.7.

The process begins by using the N sensors’ measurements as the means of

their respective distributions. The random measurements resulting from the sensors’

distributions are used to produce geolocation estimate. This process is repeated until

M estimates are produced. The geolocation covariance matrix is estimated from the M

geolocation estimates.
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Figure 2.7: Monte Carlo Simulation covariance matrix estimation.

The MCS produces a scatter of geolocation estimates. An example distribution of

position estimates is shown in Figure 2.8. Since the sensors’ measurements are used as the

means of their distributions, the scatter of geolocation estimates produced by the MCS will

be centered on the estimate given by the sensor measurements. Thus the distribution will

have the same mean as the NLO.

The primary purpose of producing MCS is to provide truth for the confidence surface

provided by the NLO. To accomplish this task, the distribution of the scatter is described

in terms of a covariance matrix.
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Figure 2.8: Scatter of geolocation position estimates from MCS.

Let the number of MCS estimates be M. The ith estimate is xi. The sample covariance

matrix may be calculated as [13]

Σx =
1

M − 1

M∑
i=1

(xi − E [xi]) (xi − E [xi])> . (2.54)

For a large value of M, the sample covariance matrix will converge to the true

covariance matrix. Therefore, the sample covariance matrix is an estimate of the true

covariance matrix. Observe that in Figure 2.7, the method for producing geolocation

estimates from measurements is not given. MCS can be used to produce an estimate of the

true covariance matrix for any geolocation algorithm. Therefore, MCS provides a means

of estimating the covariance matrix for the TA and NLO.

Note that the value of M, for which the sample covariance matrix converges

sufficiently, is unknown. One method of choosing M is to select a value that from
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experience has been shown to converge. Another method is to keep increasing the

number of MCS samples until the sample covariance matrix changes by a sufficiently

smaller amount. This provides a method for visualizing the confidence estimates for the

geolocation algorithms.

MCS is the only means identified presently for accurately producing the covariance

matrix for the TA. It also provides the ability to check the accuracy of the covariance matrix

produced by the NLO.

The application of these algorithms on simulated data is described in the following

chapter. The methodology addresses how the TA and NLO are compared against each

other and how the NLO may be improved to take into account more sources of error. These

and other practical concerns regarding the development of this geolocation method and

confidence estimation and visualization scheme are described in the following chapter.
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III. Methodology

This chapter discusses the methodology for evaluating the efficacy of Non-Linear

Optimization (NLO) and determining which NLO(s) provides the best performance.

In Chapter 1, the TA is described as a standard means of estimating the subject’s location

from Line-of-Sight (LOS) measurements. The literature review in Chapter 2 led to interest

in NLO, otherwise known as the Gauss-Newton method. The objective of this research

is to compare the performance of the NLO with the TA, and the benefits provided by

improvements to the NLO. Furthermore, it is desirable for system operators to be capable

of visualizing the confidence in geolocation algorithms. Therefore, a comparison of

confidence estimates is another research objective.

The methodology used in this research is to simulate scenarios, generate measure-

ments, and run the various algorithms on this simulated data. The first stage in this method

is simulating the scenario. The subject being localized is used to parameterize the sensor

generation. Therefore, the flightpath generation is described first.

3.1 System Geometry Generation

3.1.1 Time Generation.

The measurement times are the first part of the scenario simulation. The times are used

to generate the subject’s flightpath and the sensor positions. Therefore, timing generation

is the first stage in generation of the system’s geometry (that is, the positions of the subject

and the observing sensors).

Sensors may produce LOS measurements of the subject at different times. Moreover,

it may be desirable to use sensor measurements that are close to the time at which the user

would like to geolocate the subject.
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To this end, measurement times are generated in a pseudorandom manner. The

measurement time for each sensor’s initial measurement time t0 is chosen according to

a uniform distribution. The parameters of the uniform distribution were arbitrarily chosen

as

t0 ∼ Uni f (1, 9) s (3.1)

Subsequent measurement times tk are generated in the same manner, using the

previous time as a starting point as

tk ∼ tk−1 + Uni f (1, 9) s (3.2)

This process is performed for each sensor until tk becomes larger than a threshold tmax.

Sensor measurements and truth data (the subject’s true positions and/or velocities) are

produced for these times. The time values determine when the subject’s path is sampled.

In the next section, the synthesis of the SV’s flightpath is described.

3.1.2 Space Vehicle Generation.

Given that the performance of geolocation algorithms depends on the flightpath of

the subject under observation, this research is simplified by limiting the subject to one

type. The most challenging subject, the Space Vehicle (SV), is used to evaluate the

performance of the NLOs and TA. The model for the SV, detailed in Section 2.2, contains

sinusoidal elements. Sinusoids are infinitely differentiable, so the flightpath contains an

infinite number of moments. Furthermore, the tremendous speed of an SV exacerbates the

sources of error discussed in Chapter 1. Therefore, an SV’s flightpath seems to encapsulate

the greatest extent of the sources of geolocation error.
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The flightpath is pseudorandomly generated by randomly producing a few of the

flightpath parameters from Section 2.2. These values allow the remaining parameters to

be calculated.

The orientation of the SV’s flightpath is determined by randomly generating a unit-

vector n as given by

ñ ∼ N (0, I3) (3.3)

n =
ñ
‖ñ‖

. (3.4)

This vector is orthogonal to every vector contained in a plane. The flightpath must be

contained in a plane perpendicular to this plane. This setup is shown in Figure 3.1. There

are an infinite number of planes orthogonal to the plane shown in blue in Figure 3.1.

The plane containing the flightpath is determined via a uniformly random rotation of the

flightpath about n. The MATLABr function used to simulate the satellites is given in

Appendix A. The shape of the flightpath is created by randomly generating four of its

parameters.

The arc-angle (γ in Figure 2.3), apogee, and final altitude a f and speed at the end of

the reentry phase v f are randomly generated as

γ ∼ Uni f
(
5.5 × 106/r, π

)
Radians (3.5)

apogee ∼ Uni f
(
900 × 103, 1.5 × 106

)
m (3.6)

a f ∼ Uni f
(
150 × 103, 450 × 103

)
m (3.7)

v f ∼ Uni f
(
5 × 103, 7 × 103

)
m/s. (3.8)

Equation (3.5) is an estimate of the typical ranges these values would have for

a Low-Earth Orbit (LEO) satellite. The remaining three parameters are the result of
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testing which values produce reasonable results. The approximate orbital speed of a

LEO satellite is 7.6 km/s. Therefore, the velocity at the transition to the reentry phase

is randomly produced as given by Equation (3.8). Its apogee is approximately 1,120 km.

Therefore, Equation (3.6) keeps the apogee near this value. Equation (3.7) and the others

in combination are used to ensure that the flightpath is never inside the Earth. The result of

this SV generation effort is given in Chapter 4.

 

Figure 3.1: SV vehicle flightpath generation. An SV flightpath is shown in yellow. The
vector n that determines the orientation of the flightpath is shown in magenta. The plane
orthogonal to the plane containing the flightpath is shown in blue.

Once the flightpath has been generated, positions and velocities of the SV along the

flightpath may be calculated. Positions and velocities are calculated at each time that a

measurement is taken by a sensor. This is done to provide simulated truth data. In this

way, the estimated SV state at these times may be compared to its estimated state. The

positions are calculated according to Equation (2.19). The velocity is calculated via the
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first derivative of Equation (2.19). The next section will describe how the SV’s flightpath

is used to parameterize the satellite generation.

3.1.3 Satellite Generation.

Though the algorithms in question may be implemented on data from any type of

sensor that measures LOS, satellites are simulated for this research. Satellites are chosen

because satellites measure the LOS to the subject across the largest distances. However,

some satellites may also be very close to the subject because various SV’s may approach the

lower satellite orbits. Thus, out of all sensor platforms, satellites provide the most diversity

in range to the subject. The first step in the satellite generation is the orbit generation. The

code that performs the satellite generation is given in Appendix A.

Four typical satellites orbits were considered: Low Earth Orbit (LEO), Medium Earth

Orbit (MEO), Geosynchronous Earth Orbit (GEO), and High Earth Orbit (HEO). There

are many satellites in various versions of these orbits. Therefore, a general literature review

was performed to develop approximate models of these orbits. While the models may not

be precise, the most important feature of the orbits for this research is their orbital distance.

The models for these orbits provide the desired diversity in the oribtal distances. The model

of each satellite is given in the orbital generation function OrbGen.m shown in Appendix

A. The orientations of the orbits are chosen pseudorandomly.

The orbits are generated at random with the constraint that all satellites must have

LOS to the SV. In addition to realism, this constraint was added to prevent satellites from

observing a subject over unrealistic distances. For example, if a LEO satellite is on the

opposite side of the Earth relative to the observed subject, the error in its LOS propagates

over a larger distance than would otherwise be possible. This constraint is implemented

by taking advantage of the randomly generated vector n from the previous section. The

constraint is illustrated in Figure 3.2.
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Figure 3.2: Satellite orbit synthesis. As before, the magenta line represents n. The
restriction on the satellite’s orbits is that they must be on the same side of the blue plane as
the SV.

A simple means of ensuring that each satellite has LOS to the subject at the time

of each measurement was not found. Moreover, this requirement is unnecessary. The

purpose of this requirement is to ensure that sensors do not observe the subject at absurd

distances. Therefore, this requirement was relaxed and substituted for the requirement that

the satellites and the subject are on the same side of the Earth. This process is tedious and

is left to the code given in Appendix A. A notional explanation of the satellite generation

is described below.

The satellite orbits are randomly generated. The length of time needed to observe the

subject is used to calculate a section of the satellite’s orbit over which the satellite observes

the subject. This section is then rotated (if needed) until both the endpoints of the section

are on the same side of the Earth as the subject. The sensors are on the same side of the

Earth meaning that the satellites are on the same side of the plane whose span is orthogonal

to n. This is the plane shown in blue in Figure 3.2. The satellite orbits and SV flightpath
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form the basis for LOS generation. The method for simulating the LOS for each algorithm

is described in the section 3.2.

3.2 LOS Generation

This section discusses how LOS measurements are simulated. LOS measurements are

generated for three purposes. The first is to evaluate the comparative performance of the

NLO to the TA. The second is verify the theoretical performance of the algorithms. Lastly,

the LOS data is produced to determine the benefits provided from adding complexity to the

NLO. Each NLO takes into account certain sources of error. The LOS synthesis for the

Static NLO is described in the next section.

3.2.1 Stationary Subject.

Each NLO includes certain sources of LOS error in their model. The simplest NLO,

the Static NLO, only takes into consideration the geometry of the system. It does not

include sensor synchronization, the subject’s velocity, and time delay in its model. Sensor

synchronization means that the sensors obtain their measurements at the same time. The

time delay is the time it takes for a signal coming from the subject to be received by the

sensors.

The Static NLO assumes that the subject is stationary over the duration of the

measurements used to provide an estimate. This assumption is inaccurate for fast moving

subjects and unsynchronized sensor measurements. In such a case, the NLOs confidence

surface is expected to be overly confident.

To verify that the static NLO performs correctly, a system is created where the sensors’

measurements are perfectly synchronized, and the subject is stationary. The Static NLO is

optimized for this type of scenario. If the static NLO has been correctly implemented, then

its confidence estimate will be ideal and should match its MCS.

For the static NLO the LOS generation is straightforward. The measurement

distribution follows from Figure 3.3. Since the subject is stationary, the ideal LOS
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measurement is merely the difference vector between the subject and the sensor. Therefore,

since it is assumed that the measurements have no bias, the means of the θ and φ

distributions are the spherical angles associated with this difference vector. The difference

vector ψ = x− s. Given this difference vector and taking note of Equation (2.3), this means

the distributions corresponding to the difference vector between the subject and a sensor

can be calculated as

µθ = arctan 2
(
ψy,ψx

)
= arctan 2

(
xy − sy, xx − sx

)
(3.9)

µφ = arctan 2
(√

ψ2
x + ψ2

y ,ψz

)
= arctan 2

(√
(xx − sx)2 + (xy − sy)2, xz − sz

)

where µθ and µφ are the respective means of the θ and φ distributions. The distributions

are assumed to be Gaussian as given by Equation (2.5). Because Equation (3.9) allows the

means to be calculated, only the variances are unknown.

The variances of the θ and φ distributions are determined by the confidence in the

LOS-measuring sensor. The variances are arbitrarily selected in this research. In the next

section, this problem is expanded to include subject motion.

3.2.2 Adding Object Motion.

In this section, the LOS data takes into account linear motion. The subject has constant

velocity, and the time delay is not included. The utility of this data is in verifying the

functionality of the Velocity NLO. The Velocity NLO assumes that the subject moves

in approximately a straight line over the duration of the measurements used to provide

a geolocation estimate, and it does not include time delay in its model. Therefore, the

Velocity NLO should converge to the ideal estimate of the subject’s state and provide an

ideal confidence surface.

Because the time delay is not included, the sensors measure the LOS to the subject

instantaneously. Therefore, the means of the sensor distributions are calculated in the same
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Figure 3.3: Static NLO LOS synthesis. The coordinates to the sensor are given by the
vector s. The subject’s coordinates are given by the vector x. ψ is the difference vector
between the subject and the sensor. θ and φ are the spherical angles associated with ψ.

manner as in the static case described by Equation (3.9). The only difference in this case is

that the subject’s position changes with time. The subject’s position at a given time p(t) is

described by the vector-valued function as given by

p(t) = p(t)|t=0 + ṗt. (3.10)

In this equation, the subject’s velocity is the first derivative of the position with respect

to time and denoted by ṗ. Note that the velocity is a constant and thus not a function of
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time. Different velocities are used to test the NLOs. Next, the time delay is added to the

linear model.

3.2.3 Adding Time Delay.

The LOS data generation scheme discussed in this section is used to verify the

functionality of the most robust NLO: the time delay and velocity NLO. The LOS

measurements described in this section include time delay for subject with a linear

flightpath.

The time delay is particularly relevant for satellite systems. For example, a HEO

satellite may have an approximate orbiting radius of 60 × 106 m. Radiation from a subject

sitting on the Earth’s surface requires approximately (60 × 106 − 6.731 × 106)/3 × 108 s

≈ 200 ms to be received by a HEO sensor. Although small, this time delay may be

significant for fast-moving subjects. The dead LEO satellite in Section 3.1.2 has a

maximum speed of 7.6 × 103 m/s. In 200 ms, such a satellite could traverse 1.5 km! Thus,

by the time the sensor has observed the subject, it has moved 1.5 km. The time delay means

that sensors are not observing the subject where it currently is but where it used to be.

Therefore, the means of the θ and φ distributions are determined by the subject’s

position at the time that the sensor measures it minus the time delay. To solve this problem,

the following definitions are made. The time delay is give the variable td. The time at

which the subject is observed by a sensor, the measurement time, is called tm. The LOS

for a given sensor is then determined by the subject’s position at tm − td. This is concerned

with data simulation. Therefore, the subject’s motion is known. Its position at tm is known,

and the sensor’s position is also known; therefore, finding the subject’s position at tm − td

requires knowledge of only td. A method for calculating td is developed using Figure 3.4.

The time delay is calculated by finding an equation for the time delay in terms of the

the subject’s position and velocity and the sensors position. Because this is the synthesis
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Figure 3.4: LOS with time delay synthesis setup. The sensors position at the measurement
time tm is given by s(tm). Two of the subject’s positions are shown as the asterisks. Its
flightpath is shown as the straight lines through the asterisks. The distance between the
sensor at time tm and the subject at time tm − td is denoted by d.

problem, the subject’s motion is known. Therefore,

x(tm − td) = x(tm) − ẋtd (3.11)

Because the subject’s position and velocity are known, the unknowns in this equation

are td and x(tm − td). Another independent equation is developed to take advantage of the

fact that the sensor’s location is known, yielding an equation for td.

The time delay is the time it takes for the signal emitted from the subject at tm − td to

reach the sensor at tm. The signal traverses a distance of d at a rate of the speed of light c.
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Therefore, from Figure 3.4,

d = ‖x(tm − td) − s(tm)‖ (3.12)

Because the speed of light is a known constant, td may be given as

td =
‖x(tm − td) − s(tm)‖

c
(3.13)

Substituting Equation (3.11) into the above equation and multiplying by c produces

ctd = ‖x(tm) − ẋtd − s(tm)‖ (3.14)

The unknown in this equation is td. Squaring both sides of the above equation produces

a quadratic equation for td. This equation may be solved for td. Because the equation is

quadratic, two solutions exist; however, only one is realistic. By observing the nature of

the solution, the correct equation for td is selected. One of the solutions is negative. The

negative solution produces a value of tm − td which is greater than tm. By the problem’s

setup, the value of td must be positive, so the negative value cannot be the solution.

Given td, the means of the θ and φ distributions may be calculated as

µθ = arctan 2
(
xy(tm − td) − sy(tm), xx(tm − td) − sx(tm)

)
(3.15)

µφ = arctan 2
(
xz(tm − td) − sz(tm),

√
(xx(tm − td) − sx(tm))2 + (xy(tm − td) − sy(tm))2

)
.

With td known, x(tm − td) is also known as per Equation (3.11).

The next section discuses the synthesis of LOS data for a model of the most

challenging subject. The most challenging scenario for geolocation is considered to be

the case of observing a fast-moving subject such as an SV.
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3.2.4 Space Vehicle Scenario.

Sections 3.2.1 to 3.2.3 describe LOS measurement synthesis for unrealistic subjects

that are stationary or have linear flightpaths. This section describes LOS data generation

for the most challenging subject: the Space Vehicle (SV).

The time delay cannot be analytically calculated for the SV. Therefore, time delay is

calculated as part of the subject’s flightpath. This process is illustrated by Figure 3.5. The

idea is to first generate the measurement times for the sensors as described in Section 3.1.1.

Next, the SV’s flightpath is generated. The time values and the SVs flightpath parameters

are used to generate sensor positions. The time delay that would exist between the sensors

and the subject at the time of measurement tm is then calculated via

td =
‖x(tm) − s(tm)‖

c
. (3.16)

The time delay for each measurement time is added to the measurement time. The

SV flightpath is simulated at the time corresponding to the sensors’ measurements. These

positions are the locations of the SV at measurement times tm. With the subject’s position

at the measurement times calculated, the LOS angles associated with these positions may

be simulated. This concludes discussion on the synthesis of data for the most challenging

scenario.

3.3 Static NLO

This section describes how the static NLO is constructed. For the static NLO, it

is assumed that the subject is stationary while sensors produce the measurements used

to geolocate it. As discussed in Section 2.4, at the core of this method is the linearity

assumption.

This assumption is captured in the Jacobian of the measurements as a function of the

subject’s state Ω (x). This function outputs the ideal (noiseless) measurements that are
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Figure 3.5: Geometry for space vehicle LOS synthesis. The subject’s flightpath is shown
as the curved line. Its positions at the measurement times are illustrated by the points along
the path. The time delay associated with distance between the sensor at time tm and the
subject at the time of measurement tm is denoted by td. The squares illustrate the SV’s
location at the tm.

associated with the input subject state. Equation (3.9) may be used to find this function

for one pair of θ and φ measurements in the static scenario (the subject is stationary). This

equation gives the means of the θ and φ distributions, respectively. The means of these

angles are the angles that should be measured in the absence of noise. Therefore, the ideal

angles that should be measured for the static scenario may be calculated as

ψ = x − s

θ = arctan 2
(
ψy,ψx

)
(3.17)

φ = arctan 2
(√

ψ2
x + ψ2

y ,ψz

)

where s is a vector representing the sensor’s position.

To localize the subject, several measurements must be used. Therefore, the

Jacobian will be the concatenation of the Jacobian of each measurement as described in
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Equation (2.39). Thus the Jacobian at k − 1 is given as

Jk−1 =



∂θ1
∂xx

∣∣∣
xk−1

∂θ1
∂xy

∣∣∣
xk−1

∂θ1
∂xz

∣∣∣
xk−1

∂φ1
∂xx

∣∣∣
xk−1

∂φ1
∂xy

∣∣∣
xk−1

∂φ1
∂xz

∣∣∣
xk−1

∂θ2
∂xx

∣∣∣
xk−1

∂θ2
∂xy

∣∣∣
xk−1

∂θ2
∂xz

∣∣∣
xk−1

∂φ2
∂xx

∣∣∣
xk−1

∂φ2
∂xy

∣∣∣
xk−1

∂φ2
∂xz

∣∣∣
xk−1

...

∂θm
∂xx

∣∣∣
xk−1

∂θm
∂xy

∣∣∣
xk−1

∂θm
∂xz

∣∣∣
xk−1

∂φm
∂xx

∣∣∣
xk−1

∂φm
∂xy

∣∣∣
xk−1

∂φm
∂xz

∣∣∣
xk−1



(3.18)

where each angle’s subscript indicates the measurement with which it is associated. The

partial derivatives from which the Jacobian is constructed are the partial derivatives of θ

and φ as given in Equation (3.17). The values of these derivatives at xk−1 are not equal

for different measurements because the sensor location is different for each measurement.

These derivatives are given compactly in the form of the gradients of the measurement

angles, ie

‖ψ‖2 = (xx − sx)2 + (xy − sy)2 + (xz − sz)2

‖ψxy‖
2 = (xx − sx)2 + (xy − sy)2

∇xθ =

[
−

xy−sy

‖ψxy‖2
xx−sx
‖ψxy‖2

0
]

(3.19)

∇xφ =

[
(xx−sx)(xz−sz)
‖ψ‖2‖ψxy‖

(xy−sy)(xz−sz)
‖ψ‖2‖ψxy‖

−
‖ψxy‖

2

‖ψ‖2‖ψxy‖

]

The Jacobian described above may then be input into Equation (2.44) to produce an

updated estimate of the subject’s state as given by

x̂k = x̂k−1 + (J>k−1Σ
−1Jk−1)−1J>k−1Σ

−1
Ω ∆Ω (3.20)
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This process may be iterated until it converges. The process is said to converge when the

‖x̂k − x̂k−1‖ < 1 × 10−6. The residual term ∆Ω is the difference between the measured LOS

and the LOS that should have been ideally measured if the subject’s state is xk−1. This is

expressed by

∆Ω = Ω −Ω (xk−1) (3.21)

where Ω is the measured LOS angles. This process requires an initial estimate to begin

using the NLO at k = 0. The initial estimate is provided via triangulation as described in

Section 2.3. The remaining unknown quantity from Equation (3.20) is the matrix ΣΩ.

ΣΩ is the covariance matrix of the measurements. The covariance matrix is arbitrarily

defined as

ΣΩ = σ2I (3.22)

where the standard deviation σ = 5 × 10−6 rad. (In Chapter 4 the change in geolocation

performance resulting from difference standard deviations is discussed). With the

covariance matrix defined, all of the terms in Equation (3.20) have been described.

The covariance matrix for the measurements may be combined with the Jacobian via

Equation (2.52) to produce the covariance matrix of the subject’s state as given by

Σx =
(
J>Σ−1

Ω J
)−1

(3.23)

If the initial state estimate is close to the true state, this NLO will converge to an

unbiased least-squares solution to the static geolocation problem. The next section will
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address the construction of the Velocity NLO. The Velocity NLO optimizes for the

subject’s motion.

3.4 Velocity NLO

In this section, an NLO is developed to solve the geolocation problem where the

subject’s position changes significantly over a short amount of time. If all of the sensors

measure the LOS to the subject at the same time and subject’s state is estimated at that time,

then the subject’s velocity is irrelevant. In this case the geolocation problem simplifies to

the static scenario. The more interesting problem is the scenario where the sensors do not

measure LOS at the same time. In this case, a time at which to estimate the subject’s state

must be selected.

We let the time when a sensor produces a LOS measurement of the subject be tm.

The time at which the user desires to estimate the subject is te. For this type of LOS data,

it is assumed that the subject’s motion is approximately linear over short spans of time.

Therefore, the subject’s motion is described similar to Equation (3.10) by

p(t) = p(t)|t=0 + ṗt (3.24)

where the subject’s position is given by p(t) and its velocity is given by ṗ. As before, the

velocity is constant. There is now an additional unknown in this problem: the velocity of

the subject. Therefore, the subject’s state now includes velocity and is ordered as given by

x =

[
xx xy xz ẋx ẋy ẋz.

]>
(3.25)

As before, the NLO requires that LOS measures are described in terms of the subject’s

state by a function herein called Ω(x) . In this case, the NLO is being used to estimate the

subject’s state at an estimation time which may or may not be the same as the measurement

time. This relationship is developed in the manner illustrated in Figure 3.6. The subject’s
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position is projected in time via its model of motion to measurement time from the

estimation time. The relationship between the measurements and the subject’s state is then

identical to that of the static case.

 

𝑺2 𝑡𝑚2  
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 𝑡𝑒 − 𝑡𝑚2 𝒑    

𝑺1 𝑡𝑚1  

  

Figure 3.6: Setup for the velocity NLO. The subject’s velocity is used to project its state
from the estimation time to the measurement time.

From Figure 3.6, it can be seen that the difference between the subject’s position at

the measurement time and its position at the estimation time may be calculated as

p(tm) = p(te) − (te − tm)ṗ. (3.26)

Because the objective is to estimate the subject’s state at te, the true LOS measurements

associated with the subject’s state at te must be calculated. If calculable, this allows the

LOS measurements to be compared against the true LOS that should be measured if the
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estimated subject state were its true state. The difference between the measured LOS and

the true LOS associated with the estimate of the subject’s state is the residual term ∆Ω.

It is assumed that in a general scenario, the estimation time does not coincide with a

measurement. Equation (3.26) gives an equation for the subject’s state at the estimation

time in terms of the measurement time. Therefore, the ideal measurements are a function

of the subject’s state at the measurement time in terms of its state at the estimation time.

This is mathematically given by

Ω (x(tm)|x(te)) = Ω


p(te) − (te − tm)ṗ

ṗ


 (3.27)

As in the static case, the NLO’s θ and φ measurement angles depend only on the

subject’s position at the measurement time. However, because the measurements are now

described in terms of the subject’s state (position and velocity in this case) at the estimation

time, the subject’s velocity must also be taken into account. Therefore, Equation (3.17) is

modified for the scenario with a constant-velocity subject, ie

ψ = (p(te) − ṗ(te − tm)) − s

θ = arctan 2
(
ψy,ψx

)
(3.28)

φ = arctan 2
(√

ψ2
x + ψ2

y ,ψz

)

More than one LOS measurement is used for geolocation, soΩ (x) is the concatenation

of θ and φ and functions of the subject’s state for each sensor. This concatenation of

functions is linearly approximated using the Jacobian. As before, the Jacobian contains

the first partial derivatives of θ and φ with respect to each variable in the subject’s state for

each sensor at the current estimate of the subject’s state. In Equation (3.18) the Jacobian

contained only partial derivatives with respect to the subject’s position. Now the subject’s
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state includes its velocity, and so the Jacobian also contains the partial derivatives of θ and

φ with respect to velocity. The Jacobian for the velocity NLO is given by

Jk−1 =


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∂φ1
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

(3.29)

These partial derivatives are taken with respect to θ and φ as given in Equation (3.28).

The result of this differentiation is similar to that given by Equation (3.19); however, the

derivatives are too lengthy to be written in this document. The derivatives are recorded in

VNLO NTD.m given in Appendix A.

The covariance matrix of the measurements ΣΩ is defined just like in the static

case. The NLO is then used to improve estimates of the subject’s state according to

Equation (3.20).

The NLO requires an initial estimate of the subject’s state. Previously, the initial

estimate contained only position. Now the initial estimate includes velocity. The initial

guess of velocity is produced by interpolating between initial position estimates. The

position estimates are provided via triangulation. The initial velocity estimate is calculated

by

ˆ̇p0(tei) =
p̂0(tei) − p̂0(tei−1)

tei − tei−1

, i > 1 (3.30)

where tei is the ith estimation time and the 0 subscript represents that this is the initial

velocity estimate which is used to start the NLO. Note that because there is no estimation
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prior to the first estimation time, the velocity at the first estimation time cannot be

interpolated. Therefore, it is assumed that the velocity at the initial estimation time is

the velocity at the subsequent estimation time.

Since the NLO also optimizes the subject’s velocity, the covariance matrix of the

subject’s velocity is also produced. The covariance matrix of the subject’s velocity may

be found from the covariance matrix of the subject’s state. The covariance matrix of the

subject’s state is given by Equation (2.52). This covariance matrix is expanded yielding

Σx =



var(px) cov(py,px) . . . cov(ṗz,px)

cov(px,py) var(py) . . . cov(ṗz,py)
...

...
. . .

...

cov(px, ṗz) . . . . . . var(ṗx)


(3.31)

The upper left 3 × 3 matrix contains the position covariance matrix. The lower right

3 × 3 matrix contains the velocity covariance matrix. These covariance matrices may be

used to produce an error ellipsoid for position and velocity via the procedure given in

Section 2.5. In the next section, the subject is still modeled as having an approximately

linear path over short amounts of time; however, the time delay is added to the model.

3.5 Time-Delay and Velocity NLO

This section addresses the construction of the time delay and velocity NLO. The

previous NLO assumed that the subject’s motion may be approximately modeled as having

constant velocity over a short length of time. That model may be more realistic for

fast-moving subjects. However, it ignores another factor in the relationship between the

measurements and the subject: the time delay.

The sensors modeled in this research are passive, and therefore, they produce LOS

measurements of the subject from the emission radiated by the subject. The propagation
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time between the subject and the sensor is referred to as the time delay. The time delay is

given the variable td throughout this thesis.

The first step in developing the NLO is to develop a description of a sensor’s

measurements in terms of the subject’s state. Equation (3.14) is the equation used to

simulate a time delay for a subject state and sensor position. In that case, data is simulated

and the subject’s path is known. The subject’s state is unknown for the NLO; however,

the equation still provides an equation for td in terms of the subject’s state x. The goal is

to describe the measurements that a sensor should ideally receive in terms of the subject’s

state. This function is depicted as Ω (x). Since the time delay is explicitly described in

terms of the subject’s state in Equation (3.14) it is not another element of the subject’s

state.

For the velocity NLO, the ideal measurement angles are a function only of the

subject’s position at the time of measurement tm. When time delay is considered, the

ideal measurements are rather only a function of the subject’s position at the time when

the subject emitted the radiation (tm − td) observed by the sensor. Furthermore, it may be

desirable to geolocate the subject at a time other than a measurement time.

This issue is encountered in the previous section where the velocity NLO is developed.

The time at which the subject’s state is desired is called the estimation time te. For the

velocity NLO, the subject’s state at the time of measurement is described in terms of its

state at the desired estimation time. The same approach is followed here the only difference

being that the subject’s location at the time of measurement is not the location that the

sensor’s LOS measures.

Figure 3.7 develops the solution to this problem in the same manner as for the velocity

NLO. The objective is to develop the function Ω (x(te)). Ω (x(te)) describes the LOS

measurements as a function of the subject’s state at the estimation time. The sensor’s

measurements at tm are measurements of the subject’s location at tm minus the time it took
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for the radiation to reach the sensor from the subject td. Therefore, the measurements at the

measurement time is the LOS to the subject at tm − td. Therefore, the measurements angles

θ and φ may be described as

ψ = (p(tm − td) − s(tm)

Ω (x(te)) =

θ(x(te))

φ(x(t))

 =

 arctan 2
(
ψy,ψx

)
arctan 2

(√
ψ2

x + ψ2
y ,ψz

)
 (3.32)

where s(tm) is the sensor’s position at tm, p is the subject’s location, td is the time delay, and

ψ is the difference vector between the subject and the sensor.
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Figure 3.7: Geometry for time delay and velocity NLO development. The velocity is used
to project the subject from its location at tm to its location corresponding to the sensors’
measurements. It is then projected to its position at the estimation time.

Equation (3.32) gives the noiseless LOS measurement that should be produced in

terms of the subject’s state at te − td. To estimate the subject’s state at te via the NLO,
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the ideal measurements must be described in terms of the subject’s state at te. Therefore, a

relationship between the state at te − td and te must be found. It is assumed that over short

durations, the subject’s motion is approximately linear, and so it has constant velocity, ie

p(tm − td) = p(te) − ṗ(te − (tm − td)) (3.33)

This equation still contains an unknown, the time delay td. In Section 3.2.3,

Equation (3.14) is developed in which an equation for the time delay is described in terms

of the subject’s state at tm. However, to write Ω(·) as a function exclusively of x(te), td

must be described in terms of x(te). The solution for td from Equation (3.14) is denoted as

function td(x(tm)). Given the linear path assumption for the subject, we have

p(tm) = p(te) + ṗ(tm − te). (3.34)

Therefore, the time delay function may be described in terms of the subject’s state at

te as given by

td(x(tm)) = td(p(te) + ṗ(tm − te), ṗ) (3.35)

For simplicity this result will be called td(x(te)).

When Equation (3.35) is coupled with Equation (3.32) and Equation (3.33) it produces

the following equation for the ideal measurements exclusively in terms of the subject’s state

at te as given by

ψ =
[
p(te) − ṗ (te − tm + td(x(te)))

]
− s(tm)

Ω (x(tm)) =

θ(x(tm))

φ(x(tm))

 =

 arctan 2
(
ψy,ψx

)
arctan 2

(√
ψ2

x + ψ2
y ,ψz

)
 (3.36)
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The linearity assumption in the NLO results from finding the Jacobian of this equation.

Because the time delay was described in terms of the subject’s state at the te, the time delay

is not another element of the state vector. Therefore, the Jacobian is formed just as given

by Equation (3.29) for the velocity NLO. However, the differentiation of θ and φ in terms

of the subject’s state is not the same as it was for the Velocity NLO because the time delay

is included.

Given this Jacobian, the NLO iteratively improves upon its initial guess via

Equation (3.20). The only difference is in the calculation of the Jacobian. Furthermore, the

addition of the time delay does not change the procedure for producing the error surface

or subject’s state covariance matrix. One issue that has not been discussed thus far is the

selection of measurements which are used to estimate the subject’s state.

3.6 Measurement Selection

The NLO linearizes an inherently nonlinear problem. The linearization transforms

the problem into iteratively solving an overdetermined system of equations as described in

Section 2.4. Ignoring weighting, the NLO is set up as

∆Ωk ≈ Jk∆xk (3.37)

where J is the Jacobian which provides the linearizing assumption as described in the

previous sections. ∆xk is the difference between the current best estimate of the subject’s

state xk and the next best estimate. ∆Ω is the difference between the measured angles Ω
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and the LOS angles associated with xk. Equation (3.37) is expanded yielding

∆Ωk =



θ1

φ1

θ2

φ2

...

θm

φm



−



θ1(xk)

φ1(xk)

θ2(xk)

φ2(xk)
...

θm(xk)

φm(xk)



(3.38)

where θ j is the θ angle that was measured by the jth sensor and θ j(xk) is the angle that would

have been measured in a noiseless scenario if the subject’s state really was xk.

For the system to be overdetermined, the dimension of Ω must be greater than the

number of elements in the subject’s state. Therefore, if there are n elements in the

subject’s state, then 2 × m > n. Therefore, the static NLO requires that a minimum

of two measurements be used. The velocity NLO and time delay NLO requires three

measurements to be used. However, more measurements could be used.

There may be many measurements taken over a long timespan. All of these

measurements could potentially be used, too. For many types of subjects, this produces

large errors because of the assumptions inherent to the various NLOs.

The static NLO assumes that the subject is approximately stationary over the length

of time that the measurements used by the NLO are produced. This assumption may be

terribly inaccurate over a long period of time, so the resulting estimate would be very

inaccurate. If the subject’s flightpath is not approximately linear over the entire duration

that it is observed, the estimate produced by the velocity NLOs would be inaccurate.

Therefore, only a subset of the measurements should be used to estimate the subject.
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The process of selecting the measurements that should be used to geolocate the subject

is called windowing. This is performed via the function “setWindow.m” provided in

Appendix A. There are several factors to consider when deciding which measurements

should be used to geolocate the subject at a certain time.

Suppose one sensor produces several LOS measurements in a short time. Because

the sensor’s location has not changed significantly, these LOS measurements are not very

different from one another, and so they may produce an inaccurate geolocation estimate.

In terms of the confidence surface, these measurements will be incapable of narrowing the

error surface in range. Such a scenario may provide a good estimate in two dimensions, but

its estimate in range may be very inaccurate. This fact is illustrated in Figure 3.8.

Therefore, it is desirable to use multiple sensors with different views of the subject.

A diversity in observation directions provides information on the subject’s position in all

dimensions. Such measurements are referred to as diverse.

 

𝒔 𝑡𝑚1  

  𝒔 𝑡𝑚2  

  
𝒔 𝑡𝑚3  

  

Figure 3.8: Effect of using NLO with several similar LOS measurements. Since there is
very little diversity in the measurements in range, the range estimate may be inaccurate. For
this reason, it is desirable to use multiple independent sensors with different look-angles.

While unlikely, a situation with limited viewing diversity is possible with multiple

sensors. This possible scenario is ignored in the windowing process. If multiple sensors

are used to provide diversity, then multiple measurements from the same sensor might also
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be used. However, measurements that weren’t taken near the estimation time may cause

inaccurate geolocation since the NLOs assumptions become inaccurate.

Therefore, three criteria are used in performing the windowing. The window must

provide a minimum number of measurements, nΩ, some of which may be from the same

sensor. The measurements must come from a minimum number of unique sensors ns, and

a maximum window size tw. When estimating the subject’s state at a time te, the window

selects measurements as described follows.

The window looks within tw/2 of the estimation time. The window then selects the

measurements that are closest to the estimation time that are taken from ns different sensors

such that there are a total of nΩ measurements.

For example, consider the following situation. The subject is being estimated

at 0 seconds, and the requirements are a minimum of three measurements and two

measurements from unique sensors. Suppose sensor one produces four measurements at 0,

1, 2 seconds and then sensor two produces a measurement at 5 seconds. If the window looks

within 5 seconds of the estimation time, all four of the measurements will be used to satisfy

the unique sensors requirement. However, if the window requirement was 4 seconds, only

the first sensor’s measurements would be used, and a warning message would be produced.

More examples are illustrated in Figure 3.9 below.

The x-axis represents time. The red dots represent that times at which the subject’s

state is estimated. The other dots represent the sensors which produced measurements at the

times indicated on the x-axis. The window for selecting the measurements to estimate the

subject at each point in time are shown as the red-boxes. The parameters for the windowing

are shown at the top of the figure.

Due to the timing of the LOS generation detailed in Section 3.2, the measurement

constraints could also be satisfied without violating the window requirement. This

simplification is done to reduce the number of random variables affecting the comparisons
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Figure 3.9: Three windowing examples. The x-axis is the temporal axis. The red squares
on the lowest line represent estimation times. Each row represents measurement times for
a unique sensor designed by a sensor ID number. The window for each estimation time is
shown as a red box.

between the NLO algorithms. The following section describes how each algorithm’s

performance is objectively compared.

3.7 Algorithm Performance Metrics

3.7.1 Bias.

Metrics for describing the geolocation performance of the algorithms need to be

defined. As discussed in section 2.4, the NLOs estimates should be unbiased if their model

is accurate. The bias is in the algorithms is approximated via MCS. The average estimate

of the subject’s position or velocity is compared to the subject’s true position or velocity.
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Therefore, the bias β is given by

β = ‖E(x̂) − x‖ (3.39)

where x̂ is an estimate of the subject’s true state x. The next section provides a metric that

describes the average error in an estimate.

3.7.2 Mean Absolute Error.

The absolute error of a geolocation estimate is given by ‖x − x̂‖ where x is the true

subject location, and x̂ is an estimate of x. This metric provides the absolute error of a

measurement only for a specific system and a specific set of measurements. The system in

this context means the locations of the sensors, their measurements and the subject’s state.

Because the measurements are random, the absolute error for a specific system is also

random. Therefore, a useful metric for the estimate error of the algorithm needs to describe

the absolute error of the algorithm for an arbitrary system and the random measurements.

While the distribution of the measurements is assumed to be Gaussian as per Chapter

2, the covariance of that distribution is unknown. To remove extra stochastic parameters

from the algorithm’s overall absolute error, the algorithm’s absolute error is given for a

fixed measurement covariance. Therefore, the algorithm’s absolute error is described by

the Mean Absolute Error (MAE) for a fixed covariance and a random system as given by

ξ = E [‖x − x̂‖] (3.40)

where ξ is the algorithm’s MAE. The precision of a geolocation algorithm will be defined

similarly.

3.7.3 Precision.

The precision of a specific estimate is analytically described by the covariance matrix

Σx. It may be difficult to compare the precision entailed by a covariance matrix by the
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entries of the matrix. Therefore, it is desirable to convert the covariance matrix into a

single number.

A covariance matrix describes the shape of an ellipsoid [14]. Therefore, the precision

may be described the volume of the ellipsoid. The volume of an ellipsoid is

V =
4
3
πabc (3.41)

where a, b, and c are the lengths of the principal axes of the ellipsoid [21]. The principal

axes of an ellipsoid are given by the eigenvectors and eigenvalues of the covariance matrix

[18]. The eigenvectors are the principles axes, and their lengths are given by the square root

of the eigenvalues associated with these eigenvectors. (Because covariance matrices are

positive definite, their eigenvalues are always positive.) The eigenvalues and eigenvectors

may be found via Singular Value Decomposition (SVD) [19].

The SVD decomposes the covariance matrix Σ into three parts: U, S, and W. For a

symmetric matrix such as a covariance matrix, U and W are identical [31]. The columns of

W are the eigenvectors of Σ. S is a diagonal matrix of the singular values of Σ. The singular

values of a matrix Σ are the square roots of the eigenvalues of ΣHΣ [25]. The objective is to

associate the singular values of Σ with the eigenvalues of Σ. Because covariance matrices

are Hermitian ΣHΣ = Σ2. Furthermore, if (λ,v) is an eigenpair of Σ associated with the

eigenvector v then

Σv = λv

Σ2v = Σvλ

Σ2v = λ2v. (3.42)
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Therefore, if a matrix Σ has an eigenpair (λ, v), then Σ2 has the eigenpair (λ2, v). The

singular value σ of Σ associated with v is then given as

σ =
√
λλ∗ = |λ|. (3.43)

From [18], the lengths of the ellipsoid associated with the covariance matrix are the square

roots of the eigenvalues of the covariance matrix. Therefore, the lengths of the ellipsoid’s

principle axes are given by the square roots of the singular values of the covariance matrix.

Because the volume metric is variable with the system and the LOS measurements, an

overall precision metric is defined as the expected value of the confidence surface’s volume

for a random system and a set measurement covariance matrix. Therefore, the precision

metric is given as

ρ = E [V] . (3.44)

While the precision metric provides a means of measuring the precision of a

geolocation algorithm, this information has limited utility if the covariance matrix is not

accurate.

3.7.4 Confidence Estimation Accuracy.

A geolocation algorithm may overestimate or underestimate the confidence in its

estimate of the subject’s state. Therefore, it is important to know whether or not an

algorithm accurately represents its confidence estimate. The accuracy of a geolocation

algorithm’s confidence estimates may be calculated via the unitless Normalized (state)

Estimation Error Squared NEES. The NEES is given in [1]. The NEES for a given

measurement is defined as

ε = (X − X̂)>Σx(X − X̂). (3.45)
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If the geolocation algorithm accurately estimates the confidence in the subject’s state

(the covariance matrix), then E [ε] will equal the degrees of freedom in the subject’s state.

A larger value indicates that the algorithm produces overly confident estimates. Smaller

values mean that the algorithm underestimates its confidence in the subject’s state.

This chapter described the methodology by which the research question is evaluated.

It described the simulations and models used to synthesize data for the geolocation

algorithms. The next chapter describes the performances of the geolocation algorithms

using synthesized data.
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IV. Data & Results

This chapter provides the data and results for each of the algorithms developed in the

previous chapter. These algorithms are the static NLO, velocity NLO, and time

delay and velocity NLO. Each algorithm assumes certain characteristics for the subject.

For example, the static NLO assumes that the subject is stationary. Furthermore, several

claims were made regarding NLO performance when its assumptions are accurate. As

described in Chapter 2, NLO should produce an unbiased geolocation estimate that is the

most likely estimate, and NLO should accurately represent the confidence in its geolocation

estimates.

Therefore, subsequent sections provide results with the objective of verifying that

the NLOs converge to this estimate when their assumptions exactly model the scenario.

Scenarios where these assumptions are true are simulated using the models described in

Chapter 3. The setup for these scenarios is discussed and the results gathered from these

scenarios are provided.

After evaluating the NLOs where their assumptions are accurate, the NLOs are used to

geolocate the most challenging subject: the Space Vehicle (SV). The NLO’s assumptions

are only approximately true for this subject. Results on the relative performance of

these algorithms on this subject are given. The results of this section establish a means

of determining if the more robust NLOs provide improved geolocation accuracy, mean

absolute error and precision. The first section of this chapter discusses the verification

results for the static NLO.

4.1 Static NLO

The static NLO assumes that the subject is stationary. Therefore, simulated scenarios

where the subject is stationary are used to verify the theoretical performance of the static
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NLO. The generated scenarios consist of a random number of satellites. The satellites’

positions are randomly generated such that their LOS is not occluded by the Earth. Each

sensor is given a random orbiting radius. The LOS are then synthesized as discussed in

Section 3.2. A typical system generated in this manner is shown in Figure 4.1.

Figure 4.1: Typical static NLO simulation. The magenta points are satellites. The red
asterisk is the subject.

Figures 4.2 and 4.3 provide a visual comparison of the error surfaces provided by the

NLO and TA. These error surfaces were generated as discussed in Sections 2.5 and 2.6 for

one simulated scenario. These surfaces are shown for three standard deviations of error.

Thus there was a 97% probability that the subject is located inside of the error surfaces.

The top portion of Figure 4.2 shows the size of the error surface for the triangulation

method. The Monte Carlo error surfaces were generated using a MCS with 10,000 sample

points. Compare the TA’s error surface in the bottom plot to the top plot. The top plot

shows the error surface for the NLO. Observe that the NLO’s error surface is much smaller

than the TA’s error surface. The smaller size of the NLO’s error surface means that the

NLO provides tighter bounds (better confidence) in its estimate of the subject’s position.

Furthermore, the top portion of Figure 4.2 illustrates another claim about the NLO:

that the calculated error surface matches its true error. In Section 2.5, a method was
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Figure 4.2: Error Surfaces for the Static NLO and the TA. The NLO’s surface (top) is
smaller (so the NLO provides better confidence). The NLO’s calculated error surface
(shown in red matches) its error surface produced using MCS (shown in teal).
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provided for producing the NLO’s error surface without using MCS. This method allowed

the covariance matrix of the subject’s state to be calculated rather than estimated by Monte

Carlo Simulations. In this figure, the red surface is the NLO’s calculated error surface and

the teal error surface is produced by a MCS. It is visually clear that the calculated error

surface and Monte Carlo error surface are nearly the same. This similarity indicates that

the NLO accurately estimates its confidence. A comparison of the relative sizes of the error

surfaces is shown in Figure 4.3.

In Figure 4.3, the TA and NLO’s error surfaces are centered on their estimated subject

position. The true subject position is shown in white. The NLO’s error surface is red. The

TA’s error surface is blue. It is clear from this figure that the NLO’s error surface is much

smaller than that of the TA. From Section 3.7, the size of the error surfaces corresponds

to the precision of the algorithms. Therefore, the NLO provides better precision (or

confidence) in this scenario. The NLO is also centered much closer to the true subject

position than the TA. Thus, the NLO is also more accurate in this scenario.

This figure provided a visual illustration of the performance error surface for the NLO

and TA in a typical static scenario. Seven thousand of these static scenarios were simulated

to produce statistics on the performance of the static NLO and the TA. Between 3 and

7 satellites were simulated in the scenarios. The performance of the TA and NLO will be

estimated from these simulations. In Section 3.7, four statistics were discussed: bias, Mean

Absolute Error (MAE), precision, and the confidence estimation accuracy.

The MAE is the average distance between the estimates of the subject’s position and its

true position. The precision is described as the average volume of the ellipsoid associated

with some standard deviation of error. These values are given as a function of the number

of sensors is given in Figure 4.4. It may not be easy to relate the volume of the ellipse to

its size. Therefore, to provide better intuition into the ellipsoid sizes associated with these

volumes, this figure also provides the length of the semi-major axis.
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Figure 4.3: Combined static NLO and TA error surfaces. The true subject location is shown
in black. The static NLO’s error surface is shown in red. The TA’s error surface is largest
and is shown in blue.

The accuracy of the error surface estimates still needs to be discussed. The estimated

error surface accuracy is described by the NEES. This metric does not depend on the

number of sensors in the system, so it is not shown as a function of the sensor count. The

means of the NEES for each of these algorithms are given by

TA MCS NLO MCS NLO

µε 3.04 3.04 3.02

As discussed in Section 3.7, if the mean of the NEES µε converges to the degrees of freedom

in the subject state, then the algorithm accurately estimates its error in the subject’s state.
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Figure 4.4: Static NLO and TA MAE and precision. The TA, NLO, and MCS of the NLO
are shown in these plots. The MCS of the NLO tracks the NLO so closely that it cannot be
seen in these plots.
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In this case, the subject has three degrees of freedom: its x, y, and z coordinates. Thus,

the MCS accurately estimates the TA’s error surface. The NLO MCS accurately estimates

its error surface, and the error surface calculated by the NLO matches its MCS. Thus, the

NLO accurately calculates its error surface in these static scenarios.

In Section 2.4, it was claimed that the NLO produces unbiased estimates of the

subject’s state. Thus, the NLO’s average estimate of the subject’s state should equal the

subject’s true state. This is addressed in Figure 4.5.

Figure 4.5: NLO is an unbiased estimator. LOS measurements about the true LOS are
generated via MCS. The average of the resulting estimates of the subject’s location is
compared to the true location. The MCS is performed for different numbers of samples.

This figure shows the convergence of MCS for the NLO. Noisy LOS measurements

centered on the true LOS were simulated. The NLO was used with these measurements.

The average of the NLO’s estimate of the subject’s position was calculated as a function of
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the number of Monte Carlo Samples. This figure illustrates that as more samples are used,

the average NLO estimate approaches the subject’s true position.

This section provides and discusses the results for the static NLO algorithm. The

algorithm was tested in many scenarios where all of the Static NLO’s assumptions are true:

where the subject is stationary. Under these conditions the simulated performance should

match the theoretical performance. A similar discussion is provided for the velocity NLO

in the next section.

4.2 Velocity NLO

As in the previous section, the objective of this section is to demonstrate that the

simulated performance of the velocity NLO matches the theoretical NLO. The velocity

NLO is based on the assumption that the subject’s motion is approximately linear over short

durations of time. Furthermore, sensor measurements are not necessarily simultaneous.

These scenarios are simulated as described in Section 3.4.

A subject is simulated with a linear flightpath and a constant velocity. Realistic sensors

and their noisy measurements are also simulated. The velocity NLO is used with this data,

and statistics are produced.

As described in Section 3.6, when sensor measurements are not simultaneous, a time at

which to estimate the subject’s state must be chosen. Furthermore, selecting measurements

from which to estimate the subject’s state are selecting via the measurement window. The

measurement window has three settings. The settings used to produce the data for the

Velocity NLO are given below.

A total of five satellites were generated. A minimum of seven measurements were used

to perform the NLO. These seven measurements must come from at least three independent

satellites, and the time window was set at 20 seconds. In addition to using the velocity

NLO, the static NLO and TA were also used to geolocate the constant velocity subject.
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The static NLO and TA do not account for velocity, so the MAE of their geolocation

estimates should degrade as the subject’s velocity increases. Because only velocity has

been added to the system model, these statistics illustrate the added MAE due to velocity

in the static NLO and TA.

To observe these effects as a function of the subject velocity, the subject’s velocity was

sampled. A constant velocity subject was simulated with magnitudes of 10, 50, 100, 500,

1000, 3000, and 7000 meters per second. At each velocity, twenty scenarios were produced

from which more than 10,000 state estimates were recorded to generate statistics.

Figure 4.6 shows the MAE in position estimates for the three geolocation algorithms

versus subject velocity. Note that the constant velocity NLO’s estimates maintain the same

MAE irregardless of increased subject velocity. This is expected since the NLO optimizes

over velocity. Further observe that the static NLO provides the smallest MAE for very

slow subjects; however, its MAE degrades the fastest. Once the subject’s velocity is greater

than 1000 meters per second, the static NLO appears to diverge. This means that the static

NLO’s assumption that the subject is approximately stationary is so inaccurate that it no

longer converges. The TA’s estimates are more accurate than the static NLO at faster

velocities, but it performs worse than the velocity NLO.

The MAE of the velocity estimates is similar to the error for the position estimates.

This is shown in Figure 4.7. As expected, the velocity NLO provides constant MAE in

its velocity estimates. Observe the same divergent behavior in static NLO, and the TA’s

decreased MAE. Note that neither the static NLO nor the TA innately calculate velocity.

Their velocity estimates were calculated by interpolation. A remaining question is the mean

accuracy of the error surface estimates for the NLOs.

Figure 4.8 shows the NEES for the static NLO as a function of subject velocity. The

NEES starts at 3.1 (slightly over confident) and ends with a value near 108. For such large

velocities, the static NLO is drastically over confident. The NEES of the velocity NLO was
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Figure 4.6: Mean absolute error in the estimated position for a constant velocity subject
without time delay. The velocity NLO has a constant mean absolute error as expected. The
TA and the static NLO’s mean absolute error degrades with increased velocity.

estimated to be six. Note that since the velocity NLO optimizes over position and velocity,

it estimates six parameters of the subject’s state. Therefore, an NEES of six is ideal. The

velocity NLO accurately calculates its error surface for all subject velocities.

The velocity NLO should also be an unbiased estimator meaning that its geolocation

estimates should be unbiased. Furthermore, because the static NLO does not include

subject motion in its model, its geolocation estimates may be biased. Therefore, MCS

were used where the LOS measurements of the subject were simulated about the true LOS.

The static and velocity NLOs were used with this data to geolocate the subject. The result

of this MCS is shown in Figure 4.9.
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Figure 4.7: Mean absolute error in velocity estimates for the velocity NLO, static NLO, and
TA. The velocity NLO performs as expected. The error in the other algorithms’ geolocation
estimates increases with the subject’s velocity.

The results provided in this section describe the performance of the TA and static

and velocity NLOs. The velocity NLO’s simulated performance matches its theoretical

performance. The next section describes a similar comparison among the algorithms when

the time delay is included.

4.3 Time-Delay and Velocity NLO

This section examines the performance of the time delay and velocity NLO. For

brevity in this section, the time delay and velocity NLO will be referred to as NLOTD.

As in the previous sections, the primary objective of this section is to determine if the

simulated performance of the NLOTD matches its theoretical performance. Furthermore,

the previous algorithms do not account for time delay, so this section illustrates the added

error in the previous algorithms due to the time delay.
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Figure 4.8: The static NLO’s NEES for the constant velocity subject without time delay.
The NEES grows as the subject’s speed increases. This means that the static NLO
drastically over estimates its confidence in its estimates.

The simulated subject in this section is identical to the linear subject in the previous

section, except that the time delay affects the LOS measurements. These scenarios consist

of a single subject moving with constant velocity. It is observed by five sensors. To estimate

the subject, a minimum of seven measurements are used from at least three unique sensors.

All of these measurements must be found within 20 seconds of the estimation time.

If unaccounted for, the time delay creates a bias in the LOS measurements. This bias

increases with the subject’s velocity. Bias is induced into the measurements because the

subject moves some distance during the time that it takes for its emission to be observed by

the sensors. The faster the subject moves, the further it has moved over this time. Therefore,

a LOS measurement produced at a certain time will not correspond to a measurement of the

subject at that time. Thus the LOS measurements lag the position of the subject creating the
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Figure 4.9: The velocity NLO is an unbiased estimator for a linear subject without time
delay.

bias. The following result elucidates the magnitude of this error in estimating the subject’s

location as a function of velocity.

Subjects were simulated with velocities of 10, 50, 100, 500, 1,000, 3,000, and 7,000

meters per second. Statistics at each of these velocities are based on more than 10,000

geolocation samples. The TA, static and velocity NLOs, and NLOTD were used to estimate

the subject.

Figure 4.10 shows the MAE of the position estimates for each geolocation algorithm

as a function of the subject’s velocity. TheMAE of the NLOTD should be unaffected by

velocity because it accounts for the time delay. The other three algorithms do not, and so

their performance should degrade as the subject’s velocity increases. Once again, the static

NLO performs the best for slower subjects; however, its performance degrades quickly as

the subject’s speed increases. The velocity NLO performs nearly as well as the NLOTD
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for all but the fastest subjects. For the fastest subject, the NLOTD provides an MAE of 147

meters versus 654 meters for the velocity NLO and 4,691 meters for the TA. Similar results

are shown for the velocity estimates.

Figure 4.10: The MAE of each geolocation algorithm’s position estimates. The time
delay and velocity NLO provides constant performance. The other algorithms’ accuracies
degrade with increased subject velocity.

These effects are also seen in the velocity plot shown in Figure 4.11. As before,

the performance of the NLOTD is unaffected by the speed of the subject. All of the

other algorithms produce less accurate estimates as the subject’s speed increases. The

velocity NLO matches the NLOTD MAE much better than it matches position. Now that

the geolocation MAE has been addressed for all three NLOs, their NEES is given.

Figure 4.12 shows the NEES of the static and velocity NLO as functions of the

subject’s velocity. Note that the static NLO and velocity NLOs ideally have NEES values
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Figure 4.11: The MAE of each geolocation algorithm’s velocity estimates. The NLOs
that include velocity and/or the time delay provide a nearly constant MAE. The other
algorithms’ MAEs degrade with increased subject speed.

of 3 and 6, respectively. The static NLO’s NEES begins to grow for subjects with speeds

of 10 m/s. The velocity NLO provides accurate confidence over a larger range of subject

velocities than the static NLO; however, its NEES also grows with the subject’s velocity.

This indicates that the confidence estimates given by the static and velocity NLOs are

overconfident. As expected, the NLOTD was estimated to have a NEES of 6 for all subject

velocities.

Because the Velocity and Time Delay NLO includes time delay and the subject’s

velocity in its model, its estimates should be unbiased. Furthermore, the other NLOs do

not include the time delay in their models, so their geolocation estimates may be biased.

Therefore, a MCS was performed where LOS measurements of the subject were simulated
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Figure 4.12: The NEES of the static and velocity NLOs for a linear subject with time delay
included.

about the true LOS. The NLOs were used with this data to geolocate the subject. The result

of this MCS is shown in Figure 4.13.

This section addressed the performance of the NLOTD and the other geolocation

algorithms on a subject that moves with constant velocity. This subject was designed to

match the assumptions inherent to the NLOTD. The next section describes the performance

of the geolocation algorithms on a most challenging subject.

4.4 Relative NLO Performance

In Section 3.1.2, an SV is described as the most challenging subject for geolocation.

This subject is anticipated to maximally induces the errors in geolocation due to the

subject’s path and time delay. The previous three sections describe the performance of the

NLOs on simplistic subjects designed to verify the anticipated performance of the NLOs.
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Figure 4.13: The velocity and time delay NLO is unbiased. The other geolocation
algorithms produced biased estimates.

This section provides results that will be used to compare the NLOs and TA. A typical

simulated SV scenario is shown in Figure 4.14.

Because this section gives results for the most challenging subject, these results give

the worst geolocation performance that are are expected for any subject. As discussed in

Section 3.2, the LOS measurements were arbitrarily given a standard deviation of error

of 5 micro radians. The performance is dependent on the accuracy of the sensors. For

example, the accuracy and precision of the geolocation algorithms will decrease if the

standard deviation of error in the measurements increases.

To provide the statistics shown in this section, an SV’s flightpath is simulated as

described in Section 3.1.2. Results are shown for 3, 4, 5, 6, 7, and 8 sensors. A minimum of

seven measurements were used from at least 3 independent sensors within a 20 seconds of

the estimation time. Twenty different SV scenarios were simulated for each sensor count.

Each scenario typically provides more than 1,500 sensors measurements. The subject is

estimated at each measurement time. Thus, these statistics are based on approximately

30,000 geolocation estimates.
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Figure 4.14: A typical SV simulation. The blue points represent satellites. Their measured
LOS are shown as the magenta lines. The yellow line is the subject’s path, and the point in
red is the subject’s current position.

Figure 4.15 shows the MAE of the geolocation algorithms as a function of the number

of sensors. The staticNLO seems to diverge regardless of the number of sensors present.

The TA’s estimates have a smaller MAE than the static NLOs, and its MAE decreases

with an increased number of sensors. The velocity NLOs estimates are nearly ten times as

accurate as the TAs. Its MAE also slowly increases with more sensors. The most advanced

NLO, the time delay and velocity NLO produces the most accurate estimates. The MAE

of its estimates also increase when using more sensors.

The same effects are seen in the velocity estimates provided by the NLOs. The velocity

estimates are shown in Figure 4.16. As before, the static NLO appears to diverge except

when there are more than six sensors present. The TA’s performance is constant with an

increased number of sensors. The velocity NLO and time delay and velocity NLO provide
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Figure 4.15: The MAE of each geolocation algorithms’ position estimates.

similar performance. However, the time delay and velocity NLO provides the best estimate

of the subject’s velocity for each number of sensors.

Figure 4.17 shows the mean of the NEES for each geolocation algorithm. The

static NLO’s NEES is much greater than its ideal value of three. This indicates that its

confidence estimates are overconfident. The velocity NLO’s confidence estimates are

also overconfident irrespective of the number of sensors present. The time delay NLO’s

confidence estimates are also overconfident. However, its error surface estimates become

much more accurate as the number of sensors increases. With eight sensors, the time delay

and velocity NLO has an NEES of 6.1. Ideally it should have a value of 6, so it is slightly

overconfident.

These results were all produced using an arbitrarily chosen sensor confidence. Each

sensor’s confidence is described by the standard deviation of error in its distributions for
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Figure 4.16: The MAE of each geolocation algorithms’ velocity estimates.

θ and φ. The previously results used a value of 5µR. Figure 4.18 gives the performance

of the time delay and velocity NLO as a function of the standard deviation of error in the

sensors. Eight sensors were used with the same window settings as the previous results.

This data describes how the results scale with the sensor confidence. These results are only

shown for the time delay and velocity NLO since it provides the most accurate geolocation

estimates for the SV.

The previous discussion concludes the results for this research. This chapter first

verified that each NLO matched its theoretical performance in simulations. It also gave

information on how velocity and time delay increase the error in geolocation when these

are not included in the NLO model. Lastly, results were given detailing the performance of

each geolocation algorithm on the most challenging subject. The final chapter will provide

conclusions reached from this data, and offer future research recommendations.
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Figure 4.17: The mean of the NEES for each geolocation algorithm’s estimates.
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Figure 4.18: The time delay and velocity NLO’s performance as a function of sensor
confidence.
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V. Conclusions & Discussion

In this final chapter, conclusions derived from the results given in the last chapter are

discussed. The first section of this chapter describes conclusions regarding theoretical

claims about the geolocation algorithms. The next section describes conclusions regarding

the magnitude of the errors resulting from geometry, velocity, and time delay. It also

discusses the performances of the algorithms when applied to the most challenging subject.

Lastly, recommendations and discussion are given for future work.

5.1 Theoretical Verification

In Chapter 2 several claims were made regarding the geolocation algorithms. These

theoretical claims were tested via simulations. The motivation for investigating Non-

Linear Otpimization (NLO) was to resolve anticipated shortcomings in the Triangulation

Algorithm (TA). The TA does not account for system geometry, subject motion, or the time

delay.

In Section 4.1, a scenario was simulated with a stationary subject. The TA and static

NLO (which includes system geometry in its model) were used to estimate the subject’s

location. Figure 4.4 gave the accuracy of the geolocation and confidence estimates for the

TA and static NLO. It was shown in this section, that the NLO’s geolocation estimates

have half the MAE provided by the TA’s estimates. Furthermore, the NLO provided more

confidence in its estimates (its error surfaces were smaller). Both algorithms’ metrics

improved with more sensors. These results demonstrate that the NLO outperforms the

TA by accounting for system geometry.

Furthermore, the static NLO should be an unbiased estimator for a static subject. Thus,

the static NLO’s average estimate is the true subject location. This claim was tested in
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Figure 4.5. The figure demonstrated that the static NLO is an unbiased estimator in the

static case.

The static NLO also accurately calculates its error surface (the confidence in its

estimates) as illustrated in Figure 4.2. This was also demonstrated by the mean of its

NEES. This figure demonstrated that the static NLO’s calculated error surface matches the

error surface produced by MCS. However, these results should occur only when the static

NLO’s assumptions are exactly true. The static NLO should not produce ideal results when

other factors are included such as the subject’s motion and time delay.

The velocity NLO was tested in Section 4.2. In this section, a subject was simulated

with constant velocity. The static NLO and TA assume that the subject is stationary while

the LOS measurements needed to estimate it are produced. As this approximation becomes

less accurate, the static NLO and TAs geolocation estimates have an increased MAE.

This hypothesis was tested in Figures 4.6, 4.7, and 4.8 by implementing the algorithms

on subjects moving at different speeds. The results showed that the static NLO out-

performed the TA and velocity NLO for subjects with speeds less than 100 m/s. The static

NLO out-performs the velocity NLO for slow subjects because the velocity NLO matches

its velocity estimate to the random noise.

As the subject’s velocity increases, the static NLO’s estimates have the largest MAE.

This degradation occurs because the static NLO’s assumptions become less accurate as the

subject’s speed increases. It appears that the static NLO may have failed to converge for

subjects with speeds greater than 1,000 m/s. As anticipated, the TA’s MAE also decreased

with speed, although at a slower rate than the static NLO.

The velocity NLO accounts for velocity, so the subject’s velocity is innately estimated.

For subject’s with speeds greater than 100 m/s, the velocity NLO provides the smallest

MAE in its geolocation estimates. Its MAE is constant for all subject velocities. The

velocity NLO should also be an unbiased estimator. Figure 4.9 demonstrated that the
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velocity NLO is an unbiased estimator. Furthermore, the figure showed that the static

NLO produces biased geolocation estimates for a moving subject.

The velocity NLO should also accurately estimates the confidence in its estimates. The

mean of its NEES was calculated to be six. Because the velocity NLO estimates the position

and velocity of the subject in the x, y, and z directions, it estimates six parameters of the

subject’s state. Therefore, the velocity NLO accurately calculated the error surface (the

confidence in its geolocation estimates) in this scenario. However, Figure 4.8 demonstrates

that the static NLO over estimates its geolocation confidence, so its error surfaces are not

accurate. The static NLOs geolocation estimates are overconfident because the static NLO

does not include velocity in its model. Similar results were shown for the time delay and

velocity NLO.

Section 4.3 addressed the performance of the time delay and velocity NLO. A

subject was simulated with constant velocity and time delay. The error resulting from the

time delay increases as the subject’s velocity increases; therefore, a faster subject should

accentuate this error. The accuracy results for each algorithm was given as a function of

the subject’s velocity to illustrate this effect. The TA, static NLO, and velocity NLO do not

take the time delay into account and so their estimates should become less accurate as the

subject’s velocity increases.

This effect was observed in Figures 4.10 4.11, and 4.12. As anticipated, the time

delay and velocity NLO provides a smaller MAE and improved confidence estimates as the

subject’s velocity increases compared to the other algorithms. The static NLO performs

the best for subject’s with speeds less than 100 m/s. However, the static NLO’s confidence

estimates are overconfident. The velocity NLO also overestimates its confidence by a lesser

amount. For subjects with speeds less than 100 m/s, the velocity NLO accurately estimates

its error surfaces since its NEES is approximately six over this region. The time delay and
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velocity NLO accurately estimates its geolocation confidence irrespective of the subject’s

speed. The accuracy of its position and velocity estimates is also constant.

Furthermore, the time delay and velocity NLO should be an unbiased estimator in

this case. This was addressed by Figure 4.12. The figure demonstrates the time delay and

velocity NLO is an unbiased estimator. The other NLOs were biased because they do not

include time delay in their models.

The aforementioned results demonstrated the error resulting from the system

geometry, subject motion, and time delay. For example, the faster the subject, the more

error is produced in geolocation estimates. This may give validity to the assumption that

an SV is the most challenging subject for geolocation. An SV is the fastest subject that

might be geolocated and its motion is complex (meaning it accelerates and has other higher

order moments). Therefore, it could be reasonably expected to produce the most error in

geolocation estimates. The application of these geolocation algorithms to such a subject is

discussed in the next section.

5.2 Algorithm Comparison

The ultimate test of the geolocation algorithms considered here was to apply them

against the most challenging subject: a Space Vehicle (SV). Section 4.4 describes the

results of applying these algorithms to geolocate simulated SVs. Figures 4.15 and 4.16

demonstrated that the static NLO does not converge to the estimate nearest to subject’s

position for SVs. This divergence indicates that its assumptions are too inaccurate to

geolocate such a subject. The TA’s estimates have a larger MAE than the velocity and time

delay and velocity NLOs. The TA’s MAE slightly improves with an increased number of

sensors.

The MAE of the velocity NLO’s estimates is nearly one hundred times smaller than

the MAE for the TA’s estimates. The time delay and velocity NLO provides the smallest

MAE in position and velocity. These results were produced for a sensor confidence of
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5µR. Figure 4.18 provides results for the time delay and velocity NLO with other sensor

confidences. As anticipated, more accurate sensors result in smaller MAE in geolocation

estimates and improved confidence. Thus changing sensor confidence results in a vertical

shift in the geolocation accuracy plots given in this research.

Perhaps most important, the time delay and velocity NLO’s NEES nearly converges

to its ideal value for a sufficient number of sensors. Figure 4.17 demonstrates that none of

the other geolocation algorithms converge to their ideal NEES value. Therefore, the time

delay and velocity NLO provides the most accurate geolocation confidence estimates for

the most challenging subject.

While the static NLO could not provide useful estimates for the most challenging

subject, its estimates have the smallest MAE for the position and velocity of slow subjects.

Therefore, if the type of subject being observed is known, then it may be better to use the

static NLO. For example, if the user knows they are observing a static subject, then the

static NLO may provide better results.

The MAE of the velocity NLO’s estimates is larger than the static NLO’s MAE for

low-speed subjects and larger than the time delay and velocity NLO’s MAE for high-

speed subjects. Therefore, the velocity NLO does not appear to be useful. For unknown

subjects, it may be best to use the time delay and velocity NLO because it is the most

robust algorithm provided here and gives the most accurate confidence estimates of the

geolocation algorithms.

The previous discussion answers the first part of the research question: which NLO

performs the best? The static NLO provides the best geolocation algorithm for subjects

with speed less than 10 m/s. The time delay and velocity NLO provides the best geolocation

performance for general subjects. The second part of the research question is how

confidence in estimates might be visualized. A visualization of geolocation confidence

was provided by the error surfaces. This research also demonstrated that the error surfaces
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can accurately depict the confidence in geolocation estimates. However, none of the

algorithms could accurately estimate the confidence in their geolocation estimates for the

most challenging subject. The research question has been addressed; however, there are

still remaining problems that may be addressed in follow-on research.

5.3 Future Work

As described in Chapter 1, there were many assumptions and limitations for this

research. Perhaps the most significant of the assumptions is that the measurements are

unbiased. If LOS measurements are biased, then none of the results given here will

hold. In this case, the NLOs will all over-estimate their confidences. Depending on the

magnitude of the bias, the bias could be a larger source of error than the random jitter in

the measurements.

Furthermore, the sensors in this research measured the LOS with a pseudo-random

periodicity. Measurement times may not be consistent in reality. The measurement times

were also assumed to be perfectly known. In reality, there may be uncertainty in the

measurement times. It may be valuable to analyze the effects of adding more realism to the

sensor measurement times on geolocation. Relativistic effects could also be considered.

The effects of different sensors on geolocation have not been addressed. For example,

it may be valuable to consider the accuracy and confidence improvement resulting from

adding one sensor close to the subject. The accuracy and confidence in geolocation

estimates could be calculated as a function of sensor distance to the subject.

Lastly, the effects of filtering the LOS data could be useful. While the noise in

the LOS measurements is independent, the measurements are still taken of the same

subject. Therefore, one LOS measurement provides information on the next measurement.

A Kalman filter could be used to improve the LOS measurements. Something akin to

this began to be examined; however, it was mistakenly performed. A discussion of this

investigation is given in Appendix C.
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These are just some of the ideas that arose over the course of this research. The

conclusions and discussion provided here give closure to the research question, and have

resulted in potential queries for further research.
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Appendix A: Code

A.1 SV PathGen.m

1 function [ sv ] = sv PathGen( sv )
2 %% Authorship
3 % Stephen Hartzell, AFIT − GRA
4 % stephen.hartzell.ctr@afit.edu, hartzell.stephen@gmail.com
5 % Created: 06−01−2011, Modified: 10−27−2012
6 %
7 % sv PathGen Generate or update an space vehicle (SV) flightpath
8 % [ sv ] = sv PathGen( sv ) performs one of two operations
9 % depending on the format of the input sv. If input sv is not a

10 % structure, then realistic parameters that completely define ...
an sv's

11 % path are generated. If input sv is a structure with the required
12 % elements, then the subject's positions and velocities at the ...

times
13 % defined by sv.t are generated for an sv's flight path in a
14 % 2D−plane. The resulting sv is then rotated according to a ZXY
15 % rotation and the new 3D points are stored in sv.r structure. The
16 % full sv structure will have up to fifteen <1x1> structure ...

fields:
17 % a, Alpha, b, Beta, C e, Omega, Rot X, Rot Y, Rot Z, t, N, r, v,
18 % t reentry max, and t max
19 %
20 % N is a vector pointing from center of the Earth towards a ...

plane which it
21 % is normal to. The sv's flight path will be generated such ...

that the
22 % plane containing the flight path is orthogonal to the plane ...

which N is
23 % orthogonal to. N is useful if the sv flight path must be ...

located such that
24 % it is observable by a system of satellites.
25 %
26 % NOTE 1: The only known problem with this generator is that ...

for large
27 % enough ArcAngles, the generated path is unrealistic and ...

results in a
28 % much longer flight duration than is realistic.
29 %
30 % NOTE 2: Within the function, v f provides an approximation ...

of the
31 % maximum velocity which the subject will achieve at any time ...

along its
32 % path. Maximum velocities will vary, but will always stay within
33 % reasonable bounds (in all test cases: below 10 Km/s). A very ...

unique
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34 % combination of inputs would be required to produce a ...
velocity of this

35 % magnitude or greater, and it may not be possible.
36 %
37

38 %% Define constants
39

40 % Check to see if a time series is included. If it isn't, create ...
a new

41 % scenario. If it is, then generate positions based on times
42 if isstruct(sv)
43 % sv is already populated
44 [ sv ] = generate data( sv );
45 else
46 % sv needs to be populated
47 [ sv ] = generate sv();
48 end
49 end
50

51 function sv = generate sv()
52 % Generate the data needed to get sv positions at any time
53

54 % Unit vector normal to a plane which is tangent to Earth
55 N = randn(3,1);
56 N = N./norm(N);
57

58 % Radius of the Earth
59 r = 6378100;
60

61 % The number below is the minimum arc angle for which an sv would ...
be used

62 % to hit a subject. The full definition of ArcAngle is given as a ...
comment

63 % next to the used definition.
64 ArcAngle = .862325770997633+2.279266882592160*rand; %ArcAngle = ...

5500000/r+(pi−5500000/r)*rand
65

66 Apogee = 900000+rand*600000;
67

68 %% Define Ellipse
69

70 % Y coordiante of the center of the ellipse
71 C e = r−2800000;
72

73 % The constant which scales the y−components of the ellipse
74 a = Apogee + r − C e;
75

76 % This determines the starting point of the subject's path
77 Beta = asin((C e−r*cos(ArcAngle/2))/a);
78

79 % The constant which scales the x−components of the ellipse
80 b = r*sin(ArcAngle/2)/cos(Beta);
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81

82 %% Reentry Phase
83

84 % The final altitude of the sv during the reentry phase
85 a f = 150000+300000*rand;
86

87 % The velocity at the end of the reentry phase
88 v f = 5000+2000*rand;
89

90 Alpha 1 = ...
asin((−a*C e+sqrt((a*C e)ˆ2−(aˆ2−bˆ2)*(C eˆ2+bˆ2−(a f+r)ˆ2))) ...

91 / (aˆ2−bˆ2));
92 Alpha 2 = ...

asin((−a*C e−sqrt((a*C e)ˆ2−(aˆ2−bˆ2)*(C eˆ2+bˆ2−(a f+r)ˆ2))) ...
93 / (aˆ2−bˆ2));
94

95 % Ensure that the correct value of alpha is chosen given the two ...
possible

96 % values.
97 if (isreal(Alpha 1) == 0) && (isreal(Alpha 2) == 0)
98 error('Illegitimate sv Generation')
99 elseif isreal(Alpha 1) && isreal(Alpha 2)

100 if alpha 1 < alpha 2
101 Alpha = Alpha 1;
102 else
103 Alpha = Alpha 2;
104 end
105 elseif isreal(Alpha 1) == 0
106 Alpha = Alpha 2;
107 else
108 Alpha = Alpha 1;
109 end
110

111 omega = v f / (sqrt((b*sin(Alpha))ˆ2+(a*cos(Alpha))ˆ2) * 2);
112

113 % The length of time it takes to complete the reentry phase
114 t reentry max = (Alpha+Beta)/omega;
115

116 % Time samples across the orbital−phase
117 t max = (pi+2*Beta)/(2*omega)+omega*t reentry max;
118

119 sv.t max = t max;
120 sv.t reentry max = t reentry max ;
121 sv.a = a;
122 sv.b = b;
123 sv.Alpha = Alpha;
124 sv.Beta = Beta;
125 sv.C e = C e;
126 sv.omega =omega;
127 sv.Rot X = atan2(N(3),norm(N(1:2)));
128 sv.Rot Y = rand*pi;
129 sv.Rot Z = −atan2(N(1),N(2));
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130 sv.N = N;
131

132 end
133

134 function [ sv] = generate data(sv)
135 % Use the values in sv to generate positions & velocities at ...

times given by sv.t
136

137 reentry length = sum(sv.t < sv.t reentry max);
138

139 t = sv.t(1:reentry length);
140 sv r = −sv.r.*cos((t./sv.t reentry max).*sv.omega.*t−sv.Beta);
141 sv rv = 2 * sv.r * sv.omega .* t .* sin((t./sv.t reentry max).*...
142 sv.omega.*t−sv.Beta) ./sv.t reentry max;
143 sv r(2,:) = sv.a.*sin((t./sv.t reentry max).*...
144 sv.omega.*t−sv.Beta)+sv.C e;
145 sv rv(2,:) = 2 * sv.a * sv.omega .* t .*...
146 cos((t./sv.t reentry max).*sv.omega.*t−sv.Beta) ...

./sv.t reentry max;
147 %% Orbital Phase
148

149 t = sv.t(reentry length + 1:end);
150 sv o = −sv.b.*cos(2.*sv.omega.*t−sv.Beta−sv.omega*...
151 sv.t reentry max);
152 sv ov = 2*sv.b*sv.omega.*sin(2.*sv.omega.*t−sv.Beta−...
153 sv.omega*sv.t reentry max);
154 sv o(2,:) = sv.a.*sin(2.*sv.omega.*t−sv.Beta−sv.omega*...
155 sv.t reentry max)+sv.C e;
156 sv ov(2,:) = 2*sv.a*sv.omega.*cos(2.*sv.omega.*t−sv.Beta...
157 −sv.omega*sv.t reentry max);
158

159 %% Add Phases
160

161 svp = sv r(1,:);
162 svp(2,1:size(sv r,2)) = sv r(2,:);
163 svp(1,(size(sv r,2)+1):(size(sv r,2)+size(sv o,2)))...
164 = sv o(1,:);
165 svp(2,(size(sv r,2)+1):(size(sv r,2)+size(sv o,2)))...
166 = sv o(2,:);
167 svp(3,:) = zeros(1,size(svp,2));
168

169 svv = sv rv(1,:);
170 svv(2,1:size(sv rv,2)) = sv rv(2,:);
171 svv(1,(size(sv rv,2)+1):(size(sv rv,2)+size(sv ov,2)))...
172 = sv ov(1,:);
173 svv(2,(size(sv rv,2)+1):(size(sv rv,2)+size(sv ov,2)))...
174 = sv ov(2,:);
175 svv(3,:) = zeros(1,size(svv,2));
176

177 sv.r = ZXY Rotation(svp,sv.Rot Z,sv.Rot X,sv.Rot Y);
178 sv.v = ZXY Rotation(svv,sv.Rot Z,sv.Rot X,sv.Rot Y);
179 end
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A.2 OrbGen.m

1 function [ Sat ] = OrbGen( N, t )
2 %% Authorship
3 % Stephen Hartzell, AFIT − GRA
4 % stephen.hartzell.ctr@afit.edu, hartzell.stephen@gmail.com
5 % Created: 02−04−2011, Modified: 06−06−2012
6 %
7 % OrbGen Generate satellite orbital paths.
8 % [ SAT ] = OrbGen( N, T ) generates a psuedo random realistic ...

satellite
9 % orbit on the opposite side of an Earth−tangental plane ...

defined by N.
10 % N is a unit vector which points from the center of mass of ...

the Earth
11 % towards a plane which is tangential to the Earth. T is an array
12 % containing times at which satellites positions are to be ...

generated.
13 % Positions saved to SAT correspond to the times in T are ...

stored as
14 % column vectors in a matrix with the format [Sx; Sy; Sz].
15 %
16 % Note: T is restricted less it become impossible to generate ...

an orbital
17 % section only on the side of the plane opposite the Earth. ...

For this
18 % reason, LEO satellites are not generated, since their ...

orbital periods
19 % are comparable to the flight length of the space vehicle.
20

21 %% Generate Coherent Sections of Orbits Defined By Angular Region
22

23 % The check is here to guard against the rare (and perhaps
24 % impossible) situation of orbit parameters along with N causing
25 % the function to be unable to find a realistic satellite section
26 chk = 0;
27 while chk == 0
28 switch randi([2,4])
29 case 1
30 % LEO
31 LEO.name = 'LEO';
32 LEO.eccentricity = .1*rand;
33 LEO.SemiMajAx = 7378000; % m
34 LEO.SemiMinAx = LEO.SemiMajAx * ...

sqrt(1−LEO.eccentricityˆ2); % m
35 LEO.inc = rand * 90 * pi/180;
36 LEO.LoAN = rand * 360 * pi/180;
37 LEO.AoP = rand * 90 * pi/180;
38 LEO.Vt = 7800; % m/s
39 LEO.Circumference = pi*(LEO.SemiMajAx+LEO.SemiMinAx)...
40 *(1 + ((3*((LEO.SemiMajAx−LEO.SemiMinAx)/...
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41 (LEO.SemiMajAx+LEO.SemiMinAx))ˆ2)/(10 + sqrt(4−3*...
42 ((LEO.SemiMajAx−LEO.SemiMinAx)/...
43 (LEO.SemiMajAx+LEO.SemiMinAx))ˆ2))));
44 LEO.TrueAn = rand * 360 * pi/180;
45 LEO.Period = LEO.Circumference / LEO.Vt; % s
46 I = LEO;
47 case 2
48 % MEO
49 MEO.name = 'MEO';
50 MEO.eccentricity = .05*rand;
51 MEO.SemiMajAx = 20200000; % m
52 MEO.SemiMinAx = MEO.SemiMajAx * ...

sqrt(1−MEO.eccentricityˆ2); % m
53 MEO.inc = rand * 90 * pi/180;
54 MEO.LoAN = rand * 360 * pi/180;
55 MEO.AoP = rand * 90 * pi/180;
56 MEO.Vt = 4000; % m/s
57 MEO.Circumference = ...

pi*(MEO.SemiMajAx+MEO.SemiMinAx)*(1 +...
58 ((3*((MEO.SemiMajAx−MEO.SemiMinAx)/(MEO.SemiMajAx+...
59 MEO.SemiMinAx))ˆ2)/(10 + sqrt(4−3*((MEO.SemiMajAx−...
60 MEO.SemiMinAx)/(MEO.SemiMajAx+MEO.SemiMinAx))ˆ2))));
61 MEO.TrueAn = rand * 360 * pi/180;
62 MEO.Period = MEO.Circumference / MEO.Vt; % s
63 I = MEO;
64 case 3
65 % GEO
66 GEO.name = 'GEO';
67 GEO.eccentricity = .1*rand;
68 GEO.SemiMajAx = 42164000; % m
69 GEO.SemiMinAx = GEO.SemiMajAx * ...

sqrt(1−GEO.eccentricityˆ2); % m
70 GEO.inc = rand * 90 * pi/180;
71 GEO.LoAN = rand * 360 * pi/180;
72 GEO.AoP = rand * 90 * pi/180;
73 GEO.Vt = 3075; % m/s
74 GEO.Circumference = ...

pi*(GEO.SemiMajAx+GEO.SemiMinAx)*(1 +...
75 ((3*((GEO.SemiMajAx−GEO.SemiMinAx)/(GEO.SemiMajAx+...
76 GEO.SemiMinAx))ˆ2)/(10 + sqrt(4−3*((GEO.SemiMajAx−...
77 GEO.SemiMinAx)/(GEO.SemiMajAx+GEO.SemiMinAx))ˆ2))));
78 GEO.TrueAn = rand * 360 * pi/180;
79 GEO.Period = GEO.Circumference / GEO.Vt; % s
80 I = GEO;
81 case 4
82 % HEO
83 HEO.name = 'HEO';
84 HEO.eccentricity = .2*rand;
85 HEO.SemiMajAx = 60000000; % m
86 HEO.SemiMinAx = HEO.SemiMajAx * ...

sqrt(1−HEO.eccentricityˆ2); % m
87 HEO.inc = rand * 90 * pi/180;
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88 HEO.LoAN = rand * 360 * pi/180;
89 HEO.AoP = rand * 90 * pi/180;
90 HEO.Vt = 2600; % m/s
91 HEO.Circumference = ...

pi*(HEO.SemiMajAx+HEO.SemiMinAx)*(1 +...
92 ((3*((HEO.SemiMajAx−HEO.SemiMinAx)/(HEO.SemiMajAx+...
93 HEO.SemiMinAx))ˆ2)/(10 + sqrt(4−3*((HEO.SemiMajAx−...
94 HEO.SemiMinAx)/(HEO.SemiMajAx+HEO.SemiMinAx))ˆ2))));
95 HEO.TrueAn = rand * 360 * pi/180;
96 HEO.Period = HEO.Circumference / HEO.Vt; % s
97 I = HEO;
98 end
99

100 I.ArcAng = (2*pi*max(t))/I.Period;
101

102 % Define angle between V and N, V defines the orientation of the
103 % y−axis of the plane containing the generated ellipse
104 if strcmp(I.name,'LEO')
105 ang = rand*15*pi/180;
106 elseif strcmp(I.name,'MEO')
107 ang = rand*45*pi/180;
108 elseif strcmp(I.name,'GEO')
109 ang = rand*65*pi/180;
110 elseif strcmp(I.name,'HEO')
111 ang = rand*65*pi/180;
112 end
113

114 % Generate random vector U and find the the cross product of ...
N and

115 % U to create a unit vector which over−writes U which is ...
orthogonal

116 % to N.
117 U = randn(3,1);
118 U = cross(U,N);
119 U = U ./ norm(U);
120

121 % Create vector V which defines the orientation of the elliptical
122 % orbits
123 U = 6378000.*tan(ang).* U;
124 V = 6378000.*N+U;
125

126 % The angles which define the orientation of the elliptical ...
orbits

127 I.LoAN = −atan2(V(1),V(2));
128 I.inc = atan2(V(3),norm(V(1:2)));
129 I.AoP = rand*pi;
130

131 %% Find Angular Limits for Arguments of the Ellipse's Defintion
132

133 % Initialize values
134 alpha = 0;
135 ∆ alpha = .2;

107



136 dist = 2;
137

138 % This finds the positive angle, alpha, which if input into the
139 % equation of the ellipse in its own plane corresponds to one of
140 % the two points at which the ellipse intersects the equation of
141 % the plane which is tangent to the Earth (as defined by N). This
142 % loop finds alpha by an iterative approach.
143 while dist > 1e−6
144

145 % Try a new value of alpha
146 alpha = alpha + ∆ alpha;
147

148 % Define position of ellipse in 2D plane at alpha. The
149 % convention of defining the ellipse as shown below:
150 % x−values = −sin and y−values = −cos, was chosen to ensure
151 % that for alpha = 0, P r is the point on the ellipse
152 % opposite V (see V above)
153 Px = −I.SemiMajAx*sin(alpha);
154 Py = −I.SemiMinAx*cos(alpha);
155

156 % Rotate the previously defined positions along the ellipse
157 % in its own plane to define the points P r in 3D space
158 % which correspond to the points in the ellipses own plane
159 [ P r ] = ZXY Rotation( [Px;Py;0], I.LoAN, I.inc, I.AoP );
160

161 % ang is overwritten and now contains the angle between the
162 % vector pointing from the center of mass of the Earth to P r
163 % and N
164 ang = acos((P r./norm(P r))'*N);
165

166 if ang > pi/2
167 last alpha = alpha;
168 elseif ang < pi/2
169 ∆ alpha = ∆ alpha/2;
170

171 % Saves the last angle which did not go on the other
172 % side of the plane
173 alpha = last alpha;
174 end
175 dist = abs(ang−pi/2);
176 end
177

178 % Initialize values
179 beta = 0;
180 ∆ beta = −.2;
181 dist = 2;
182

183 % This finds the negative angle, beta, which if input into the
184 % equation of the ellipse in its own plane corresponds to one
185 % of the two points at which the ellipse intersects the
186 % equation of the plane which is tangent to the Earth (as
187 % defined by N). This loop finds beta by an iterative approach.
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188 while dist > 1e−6
189

190 % Try a new value of beta
191 beta = beta + ∆ beta;
192

193 % Define position of ellipse in 2D plane at alpha. The
194 % convention of defining the ellipse as shown below:
195 % x−values = −sin and y−values = −cos, was chosen to ensure
196 % that for alpha = 0, P r is the point on the ellipse
197 % opposite V (see V above)
198 Px = −I.SemiMajAx*sin(beta);
199 Py = −I.SemiMinAx*cos(beta);
200

201 % Rotate the previously defined positions along the ellipse
202 % in its own plane to define the points P r in 3D space
203 % which correspond to the points in the ellipses own plane
204 [ P r ] = ZXY Rotation( [Px;Py;0], I.LoAN, I.inc, I.AoP );
205

206 % ang is overwritten and now contains the angle between the
207 % vector pointing from the center of mass of the Earth to P r
208 % and N
209 ang = acos((P r./norm(P r))'*N);
210

211 if ang > pi/2
212 last beta = beta;
213 elseif ang < pi/2
214 ∆ beta = ∆ beta/2;
215

216 % Saves the last angle which did not go on the other
217 % side of the plane
218 beta = last beta;
219 end
220 dist = abs(ang−pi/2);
221 end
222

223 % The angular region in which the satellite's orbit can exist
224 max ang = 2*pi − (alpha−beta);
225

226 if max ang < I.ArcAng
227 chk = 0;
228 else
229 chk = 1;
230

231 % Define TrueAn such that the orbit section will exist on
232 % the side of the plane pointed to by N and is randomly
233 % positioned on that side
234 I.TrueAn = alpha + rand * (max ang − I.ArcAng);
235

236 % Angular velocity
237 Aw = 2*pi / I.Period;
238

239 % Define the motion of the satellite in its own plane
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240 Px = −I.SemiMajAx*sin(Aw.*t + I.TrueAn);
241 Py = −I.SemiMinAx*cos(Aw.*t + I.TrueAn);
242 Pz = zeros(1,length(Px(1,:)));
243

244 % Rotate the previously defined positions along the ellipse
245 % in its own plane to define the points P r in 3D space
246 % which correspond to the points in the ellipses own plane
247 [ P r ] = ZXY Rotation( [Px;Py;Pz], I.LoAN, I.inc, I.AoP );
248

249 Sat(1,(1:size(P r,2))) = P r(1,:); %#ok<*AGROW>
250 Sat(2,(1:size(P r,2))) = P r(2,:);
251 Sat(3,(1:size(P r,2))) = P r(3,:);
252 Sat(4,1:length(t)) = t;
253 end
254 end
255 end
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Appendix B: Frames

As discussed in Section 2.4, the NLO may converge to any one of several solutions to

the nonlinear system of equations. The NLO relies on the assumption that the measurement

space as a function of the subject’s stateΩ (x) is approximately linear near the initial guess

at the solution. Early in this research, it was thought that this linear approximation would

be more accurate if the angular measurements were within
[
−π4 ,

π
4

]
. This reasoning is no

longer considered valid. However, for this reason, the NLOs were written to use four

different coordinate systems.

It was thought to be desirable to make the Ω (x) function approximately linear. From

Equation (3.9) it can be seen that the LOS measurements depend on an arctangent function.

From Figure B.1 it is evident that the arctangent function is well approximated by a line

with a slope of one on the interval
[
−π4 ,

π
4

]
. However, the linear approximation may be

inaccurate in the wings.

Therefore, a set of four coordinate systems are used to keep the measurement angles

within
[
−π4 ,

π
4

]
. These coordinate systems are called frames.

If the LOS measurements fall outside of the desirable interval, then the measurements

are converted to another frame, and the optimization operates within that frame. The frames

are defined as shown below.

The frames in which the measurements are placed are determined as follows. The

measurements are converted to frame

1. if −π4 ≤ φ ≤
π
4 and −π4 ≤ θ ≤

π
4 or 3π

4 ≤ θ ≤
5π
4

2. if −π4 ≤ φ ≤
π
4 and π

4 < θ <
3π
4 or −3π

4 < θ < −π
4

3. if |φ| > π
4 and −π4 ≤ θ ≤

π
4 or 3π

4 ≤ θ ≤
5π
4
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−pi/2 −pi/4 0 pi/4 pi/2

−pi/2

−pi/4

0

pi/4

pi/2

Arctangent Approximated by Line

Figure B.1: Linear approximation of arctangent function. The arctangent function is
reasonably approximated by a line with a slope of one over the domain

[
−π4 ,

π
4

]
.

4. if |φ| > π
4 and π

4 < θ <
3π
4 or −3π

4 < θ < −π
4

All data are synthesized in frame 3. When using the NLO, each measurement is

converted to the appropriate frame.
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Figure B.2: Frame definitions. The four frames used for measurement data when
performing the NLO.
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Appendix C: Extended Kalman Filter

This appendix represents additional research that was conducted to improve geoloca-

tion estimates. This approach was determined to be inappropriate because it assume that

estimates of the subject’s state are independent. A LOS measurement may be used for more

than one estimation. Therefore, subject estimates are not independent. However, there may

still be some utility to this investigation, and so it is included here in the case of future

inquiry.

Sensors may take measurements of the subject in question over long periods of time.

Therefore, when multiple sensors have taken measurements at nearly the same time, an

estimate of the subject’s position may be produced. Therefore, the subject’s track will be

sampled by geolocation estimates. This is shown in Figure C.1. The TA and NLO considers

each geolocation estimate independently. Therefore, the subject’s track is never taken into

consideration by the NLO. This is information could be used to improve the geolocation

estimates and confidence estimates.

 

𝚺𝑿𝟏 

𝚺𝑿𝟐  

𝜮𝑿𝟑  

𝜮𝑿𝟓  

𝜮𝑿𝟒  

Figure C.1: A track of a geolocation estimates each with their own covariance matrices.
There is an apparent track; however, neither the TA nor the NLO natively take this track
into account.

If an unknown subject is being observed, it’s track is likely unknown; however, over

short lengths of time, a subject’s track may be accurately described by a second order
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model where acceleration is constant. Uncertainty in this model may be described by its

own covariance matrix. Therefore, an geolocation estimate may be projected forward or

backward by a model to estimate the subject at another time. The covariance matrix for this

new projected estimate depends on the confidence in the original estimate and the model.

The Kalman Filter uses this scheme to improve geolocation estimates at all points in time

[22]. First this section will discuss how to predict and refine and a geolocation estimate

using a previous estimate. The discussion will then be expanded to also retrodict from the

subsequent estimate. This development is similar to that given in [22].

C.1 The Linear Estimation Problem

The linear estimation problem involves attempting to produce the ideal estimate of a

subject’s state given an imperfect model of the subject’s motion and noisy measurements

of this subject’s state. The subject’s motion is described as

xk+1 =
−→
Φkxk + GkUk (C.1)

In this equation,
−→
Φk is the called the transition matrix. The right arrow represents that

it transforms the subject’s state forward to k + 1. It describes the subject’s motion if the

model were perfect. Gk describes the effect of noise in the model on the subject’s next

state. For our purposes, Gk is the identity matrix. Uk is a vector of zero-mean noise with

covariance matrix ΣΦ. k is an indexing term.

The measurements Ωk associated with the subject at xk are described as

Ω = Mkxk + Nk (C.2)

In this equation, Mk is a matrix that transforms the subject’s state into measurements.

Nk is a noise vector with covariance matrix ΣΩ. This model will be used to predict the state

and variance at k + 1.
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C.2 Prediction

The best estimate of the true state at k is x̂k = xk+εk where εk is the error in the estimate.

The error is mean-zero and has a covariance matrix of Σxk . Since Uk is mean-zero, the best

prediction −→x k+1 is given by

−→x k+1 =
−→
Φkx̂k. (C.3)

To find the covariance matrix of the predicted estimate, the above expression is

expanded as

−→x k+1 =
−→
Φkx̂k

=
−→
Φk (xk + εk)

=
−→
Φkxk +

−→
Φkεk

Solving Equation (C.1) for
−→
Φkxk, and substituting this into the above equation produces

−→x k+1 = xk+1 −GkUk +
−→
Φkεk (C.4)

The covariance matrix may be found from this expression.

The expression for the covariance matrix of the prediction is given in the next section

in the set of five Kalman Filter equations. In the Backward-Forward Extended Kalman

Filter, the only equations that differ are the prediction equations developed in this section.

While the prediction equations change in the Backward-Forward case, these results are still

relevant.

C.3 Kalman Filter Equations

The Kalman Filter is described performed by the following set of five equations.
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−→x k+1 =
−→
Φkx̂k (C.5)

−→
Σk+1 =

−→
ΦkΣk+1

−→
Φ>k + GkΣΦG>k (C.6)

Kk+1 =
−→
Σk+1M>

k+1

[
Mk+1

−→
Σk+1Mk+1 + ΣΩ

]−1
(C.7)

x̂k+1 =
−→x k+1 − Kk+1

(
Mk+1

−→x k+1 −Ωk+1

)
(C.8)

Σk+1 =
−→
Σk+1 − Kk+1Mk+1

−→
Σk+1 (C.9)

These equations are given in [22]. These equations will be used and modified for the

Backward-Forward Extended Kalman Filter. This section describes how to use prediction

to improve the estimate of the subject’s state (the geolocation estimate) and to improve the

confidence in this estimate. In the next section, this idea will be extended to incorporate

the subject’s future states retrodicted to the current state being estimated.

C.4 Adding Retrodiction

Rather than only predicting forward to the subject’s next state, the Forward-Backward

Extended Kalman Filter also retrodicts to the subject’s previous state. Therefore, the

prediction and retrodiction must be used together to provide a better estimate of the

subject’s state and covariance matrix.

The best estimate of the subject’s state at k − 1 and at k + 1 are described by

x̂k−1 ∼ N
(
xk−1,ΣXk−1

)
(C.10)

x̂k+1 ∼ N
(
xk+1,ΣXk+1

)
(C.11)
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From Equation C.5, it can be can seen that the best prediction and retrodiction to the

subject’s state at k is given as

−→x k =
−→
Φk−1x̂k−1 (C.12)

←−x k =
←−
Φk+1x̂k+1 (C.13)

Now he ideal means of combining the prediction and retrodiction must be found to

provide the best estimate of xk using the prior and posterior subject states. This combined

estimate is called ←→x k. The ideal combined estimate is the subject state at k that makes

the prediction and retrodiction most likely. This becomes a likelihood estimation problem

[18]. Therefore←→x k may be found as given by

←→x k = arg max
xk

L
(
−→x k−1,

←−x k+1|xk

)
(C.14)

Expanding this equation requires knowledge of the distribution of −→x k−1 and −→x k+1.

These distributions are Gaussian with covariances which may be calculated as shown in

Equation (C.6). Positive constants are irrelevant to the arg max problem, so they are ignored

in

←→x k = arg max
xk

e
(
− 1

2 (−→x k−1−xk)>−→Σ−1
k−1(−→x k−1−xk)

)
e
(
− 1

2 (←−x k+1−xk)>←−Σ−1
k+1(←−x k+1−xk)

)
(C.15)

The arg max is unaffected by taking the natural log of the argument. Therefore, by

taking the natural log of this argument and eliminating the factor of −1/2, the equation

is simplified to

←→x k = arg min
xk

(
−→x k−1 − xk

)> −→
Σ−1

k−1

(
−→x k−1 − xk

)
+

(
←−x k+1 − xk

)>←−
Σ−1

k+1

(
←−x k+1 − xk

)
(C.16)
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This equation may now by solved for←→x k by finding the value of xk such that the first

derivative of the argument is zero. Calculating the derivative requires

∇x
(
x>Mx

)
=

(
M> + M

)
x (C.17)

Therefore, by using Equation C.17 on Equation C.16 and setting the result to zero,

yielding

(
−→
Σ−1>

k−1 +
−→
Σ−1

k−1

) (
−→x x−1 − xk

)
+

(
←−
Σ−1>

k+1 +
←−
Σ−1

k+1

) (
←−x x+1 − xk

)
= 0 (C.18)

Because covariance matrices are symmetric by their definition, this result may be

further simplified to

2
−→
Σ−1

k−1

(
−→x x−1 − xk

)
+ 2
←−
Σ−1

k+1

(
←−x x+1 − xk

)
= 0

−→
Σ−1

k−1
−→x x−1 −

−→
Σ−1

k−1xk +
←−
Σ−1

k+1
←−x x+1 −

←−
Σ−1

k+1xk = 0

−→
Σ−1

k−1xk +
←−
Σ−1

k+1xk =
−→
Σ−1

k−1
−→x x−1 +

←−
Σ−1

k+1
←−x x+1(

−→
Σ−1

k−1 +
←−
Σ−1

k+1

)
xk =

−→
Σ−1

k−1
−→x x−1 +

←−
Σ−1

k+1
←−x x+1

xk =

(
−→
Σ−1

k−1 +
←−
Σ−1

k+1

)−1 (
−→
Σ−1

k−1
−→x x−1 +

←−
Σ−1

k+1
←−x x+1

)
←→x k =

(
−→
Σ−1

k−1 +
←−
Σ−1

k+1

)−1 (
−→
Σ−1

k−1
−→x x−1 +

←−
Σ−1

k+1
←−x x+1

)
(C.19)

The last step follows from Equation C.14. This equation provides a means of

calculating the optimal prediction of xk. Using this result, the covariance matrix of the

combined prediction
←→
Σ k can be calculated. The definition of the covariance matrix is used

to find
←→
Σ k as given by

←→
Σ k = E

[(
←→x k − E

[
←→x k

]) (
←→x k − E

[
←→x k

])>]
(C.20)
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The ←→x k − E
[
←→x k

]
term will be tackled first. It will be expanded and errors in the

state estimate at k − 1 and k + 1 will be taken in consideration as in Section C.2. Before

examining this term, ←→x k is expanded out as follows via Equation C.5 and Equation C.19

as given by

Let A =

(
−→
Σ−1

k−1 +
←−
Σ−1

k+1

)−1

←→x k = A
(
−→
Σ−1

k−1
−→
Φk−1x̂k−1 +

←−
Σ−1

k+1
←−
Φk+1x̂k+1

)
(C.21)

From Equations (C.3) and (C.4), can be expanded
−→
Φk−1x̂k−1 and

←−
Φk+1x̂k+1 as

←→x k = A
(
−→
Σ−1

k−1

(
xk −Gk−1Uk−1 +

−→
Φk−1εk−1

)
+
←−
Σ−1

k+1

(
xk −Gk+1Uk+1 +

←−
Φk+1εk+1

))
= A

(
−→
Σ−1

k−1xk +
←−
Σ−1

k+1xk

)
+ A

(
−→
Σ−1

k−1

(
−→
Φk−1εk−1 −Gk−1Uk−1

)
+
←−
Σ−1

k+1

(
←−
Φk+1εk+1 −Gk+1Uk+1

))
(C.22)

The left-hand term in the final equation is constant since xk is the true value of x at

k. The right-hand term mean 0 because εk−1 and εk + 1 are mean-zero. Recall that it has

been shown in Equation (2.53) that the NLO is an unbiased estimator. Therefore, in the

←→x k − E
[
←→x k

]
term, the constant factors are subtracted out since the expected value of a

constants yields the same constant. The expected value of the right hand term is zero.

Therefore,

←→x k − E
[
←→x k

]
= A

(
−→
Σ−1

k−1

(
−→
Φk−1εk−1 −Gk−1Uk−1

)
+
←−
Σ−1

k+1

(
←−
Φk+1εk+1 −Gk+1Uk+1

))
. (C.23)

Substituting this result into Equation (C.20) produces an equation too large to write

out here. Therefore, the result of this substitution will be shown by placing the Uk−1 and

Uk+1 terms into a variable U. The expansion of the substitution shown below is used to
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demonstrate that each term in Equation (C.23) may be analyzed separately, ie

←→
Σ k = E

[(
A

(
−→
Σ−1

k−1
−→
Φk−1εk−1 +

←−
Σ−1

k+1
←−
Φk+1εk+1 +U

)) (
A

(
−→
Σ−1

k−1
−→
Φk−1εk−1 +

←−
Σ−1

k+1
←−
Φk+1εk+1 +U

))>]
←→
Σ k = E

[(
A

(
−→
Σ−1

k−1
−→
Φk−1εk−1 +

←−
Σ−1

k+1
←−
Φk+1εk+1 +U

)) ((
ε>k−1
−→
Φ>k−1

−→
Σ−1

k−1 + ε>k+1
←−
Φ>k+1

←−
Σ−1

k+1 +U>
)

A>
)]

←→
Σ k = AE

[(
−→
Σ−1

k−1
−→
Φk−1εk−1 +

←−
Σ−1

k+1
←−
Φk+1εk+1 +U

) (
ε>k−1
−→
Φ>k−1

−→
Σ−1

k−1 + ε>k+1
←−
Φ>k+1

←−
Σ−1

k+1 +U>
)]

A>

(C.24)

Due to the linearity of expected value [7], the expected values of the cross-terms may

be examined separately. Since the only random variables present are εk−1 and εk+1, the

expected value will only operate on these. One of the cross-terms is

−→
Σ−1

k−1
−→
Φk−1E

[
εk−1ε

>
k+1

]←−
Φ>k+1

←−
Σ−1

k+1 (C.25)

Note that from [7]. The covariance matrix of two random vectors X and Y may be

described as

Σ(X,Y) = E
[
XY>

]
− E [X] E [Y]> (C.26)

If X and Y are mean-zero, then this simplifies to

Σ(X,Y) = E
[
XY>

]
(C.27)

since the subject’s state estimates are mean-zero and are based on independent identically

distributed measurements, their covariance is zero. This same argument holds for the

expected value of the U and ε cross-terms. Therefore, Equation (C.24) simplifies to the

expected value of the like-terms as shown below.
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←→
Σ k = AE

[
−→
Σ−1

k−1
−→
Φk−1εk−1ε

>
k−1
−→
Φ>k−1

−→
Σ−1

k−1 +
←−
Σ−1

k+1
←−
Φk+1εk+1ε

>
k+1
←−
Φ>k+1

←−
Σ−1

k+1 +UU>
]

A>

= A
(
−→
Σ−1

k−1
−→
Φk−1E

[
εk−1ε

>
k−1

]−→
Φ>k−1

−→
Σ−1

k−1 +
←−
Σ−1

k+1
←−
Φk+1E

[
εk+1ε

>
k+1

]←−
Φ>k+1

←−
Σ−1

k+1 +UU>
)

A>

= A
(
−→
Σ−1

k−1
−→
Φk−1Σxk−1

−→
Φ>k−1

−→
Σ−1

k−1 +
←−
Σ−1

k+1
←−
Φk+1Σxk+1

←−
Φ>k+1

←−
Σ−1

k+1 +UU>
)

A> (C.28)

Likewise, expanding out and simplifying theUU> term produces

UU> =
−→
Σ−1

k−1Gk−1ΣΦG>k−1
−→
Σ−1

k−1 +
←−
Σ−1

k+1Gk−1ΣΦG>k+1
←−
Σ−1

k+1 (C.29)

We now have a means of calculating the covariance matrix of the combined prediction and

retrodiction estimate of the subject’s state. Equations C.28 and C.19 may be used in the

Kalman Filter equations given in Section C.3.

In this way, the subject’s track is taken advantage of to refine the state estimates and

the confidences in those estimates. The confidence in the transition matrix may not be

known. Therefore, it is common to use a guess at the first iteration of the Kalman Filter.

This approach was deemed inappropriate since the same LOS measurements may be

used to geolocate the subject at different times. Therefore, the geolocation estimates are

not linearly independent thus violating a Kalman Filter assumption.
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